Skip to main content
Log in

Investigation of thermoelectric properties and photoresponse of Sb2S3−xSex crystals grown by Bridgman technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The growth of Sb2S3−xSex (x = 0, 0.1, 0.2, 0.3) crystals is carried out by the Bridgman technique with the help of a joule heating vertical zone furnace. This paper mainly addresses the thermoelectric properties and photoresponse of grown crystals. The crystals are found to be pure and stoichiometric, as observed from the EDAX spectra. The X-ray diffractogram confirmed orthorhombic structure with space group Pnma and the ‘2θ’ shift in XRD peaks confirmed the substitution of S by Se atoms. Low-temperature Raman spectroscopy from 80 to 300 K shows a shift in the Raman peak and the value of the isobaric Gruneisen parameter γiP is found to be nearly 3.88 for all samples. Raman mapping spectroscopy confirmed the homogeneity of the crystals by depth profiling up to 10 microns. All the samples show a negative temperature coefficient of resistance confirming the semiconducting nature of the grown crystals. A slight increase in thermal conductivity is observed due to increased carrier concentration by Se atoms. The temperature dependence of thermoelectric parameters is measured from ambient to 600 K. The positive value of Seebeck coefficient S confirmed the p-type conductivity for all the crystals and the thermoelectric figure of merit ZT is increased for Sb2S2.7Se0.3 crystal compared to pure Sb2S3. The I–V characteristic and photoresponse of the grown crystals are investigated and the responsivity and detectivity are both found to increase with Se incorporation. As per our knowledge ZT for this series of crystals is not reported anywhere in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. T. Ben Nasr, H. Maghraoui-Meherzi, H. Ben Abdallah, R. Bennaceur, Electronic structure and optical properties of Sb2S3 crystal. Phys. B Condens. Matter 406(2), 287–292 (2011). https://doi.org/10.1016/j.physb.2010.10.070

    Article  CAS  Google Scholar 

  2. R. Kondrotas, C. Chen, J. Tang, Sb2S3 solar cells. Joule. 2(5), 857–878 (2018). https://doi.org/10.1016/j.joule.2018.04.003

    Article  CAS  Google Scholar 

  3. A. Radzwan, A. Lawal, A. Shaari, I.M. Chiromawa, S.T. Ahams, R. Ahmed, First-principles calculations of structural, electronic, and optical properties for Ni-doped Sb2S3. Comput. Condens. Matter (2020). https://doi.org/10.1016/j.cocom.2020.e00477

    Article  Google Scholar 

  4. B. Vengatesan, N. Kanniah, P. Ramasamy, Growth of Sb2S3 single crystals by chemical vapour transport. Mater. Chem. Phys. 17(3), 311–316 (1987). https://doi.org/10.1016/0254-0584(87)90153-2

    Article  CAS  Google Scholar 

  5. V. Patil, A. Patil, J.W. Choi, Y.S. Jin, Thickness dependent properties of nanocryastalline Sb2S3 electrode. IEEE Nanotechnol. Mater. Devices Conf. NMDC 1, 172–173 (2006). https://doi.org/10.1109/NMDC.2006.4388732

    Article  Google Scholar 

  6. R.G. Sotelo Marquina, T.G. Sanchez, N.R. Mathews, X. Mathew, Vacuum coated Sb2S3 thin films: thermal treatment and the evolution of its physical properties. Mater. Res. Bull. 90, 285–294 (2017). https://doi.org/10.1016/j.materresbull.2017.03.013

    Article  CAS  Google Scholar 

  7. P.K. Nair et al., Antimony sulfide-selenide thin film solar cells produced from stibnite mineral. Thin Solid Films. 645, 305–311 (2018). https://doi.org/10.1016/j.tsf.2017.11.004

    Article  CAS  Google Scholar 

  8. M. Courel, T. Jiménez, A. Arce-Plaza, D. Seuret-Jiménez, J.P. Morán-Lázaro, F.J. Sánchez-Rodríguez, A theoretical study on Sb2S3 solar cells: the path to overcome the efficiency barrier of 8%. Sol. Energy Mater. Sol. Cells. 201, 110123 (2019). https://doi.org/10.1016/j.solmat.2019.110123

    Article  CAS  Google Scholar 

  9. U.A. Shah, S. Chen, G.M.G. Khalaf, Z. Jin, H. Song, Wide bandgap Sb2S3 solar cells. Adv. Funct. Mater. 31(27), 1–28 (2021). https://doi.org/10.1002/adfm.202100265

    Article  CAS  Google Scholar 

  10. H. Lei et al., Copper doping of Sb2S3: fabrication, properties, and photovoltaic application. J. Mater. Sci. Mater. Electron. 30, 21106–21116 (2019). https://doi.org/10.1007/s10854-019-02481-9

    Article  CAS  Google Scholar 

  11. A.A. Ebnalwaled, Evolution of growth and enhancement in power factor of InSb bulk crystal. J. Cryst. Growth. 311, 4385–4390 (2009). https://doi.org/10.1016/j.jcrysgro.2009.07.040

    Article  CAS  Google Scholar 

  12. T. Ben Nasr, H. Maghraoui-Meherzi, N. Kamoun-Turki, First-principles study of electronic, thermoelectric and thermal properties of Sb2S3. J. Alloys Compd. 663, 123–127 (2016). https://doi.org/10.1016/j.jallcom.2015.12.093

    Article  CAS  Google Scholar 

  13. D. Zhao, G. Tan, A review of thermoelectric cooling: materials, modeling and applications. Appl. Therm. Eng. 66, 1–2 (2014). https://doi.org/10.1016/j.applthermaleng.2014.01.074

    Article  CAS  Google Scholar 

  14. L. Grad, F.O. Von Rohr, M. Hengsberger, J. Osterwalder, Charge carrier dynamics and self-trapping on Sb2S3(100). Phys. Rev. Mater. 5(7), 1–8 (2021). https://doi.org/10.1103/PhysRevMaterials.5.075401

    Article  Google Scholar 

  15. R. Chetty, A. Bali, R.C. Mallik, Thermoelectric properties of indium doped Cu2CdSnSe4. Intermetallics 72, 17–24 (2016). https://doi.org/10.1016/j.intermet.2016.01.004

    Article  CAS  Google Scholar 

  16. C. Fu et al., Realizing high figure of merit in heavy-band p-type half-heusler thermoelectric materials. Nat. Commun. 6, 4–10 (2015). https://doi.org/10.1038/ncomms9144

    Article  Google Scholar 

  17. Y. Li, G. Wang, M. Akbari-Saatlu, M. Procek, H.H. Radamson, “Si and SiGe nanowire for micro-thermoelectric generator: a review of the current state of the art.” Front. Mater. 8, 1–24 (2021)

    Google Scholar 

  18. M. Noroozi et al., Unprecedented thermoelectric power factor in SiGe nanowires field-effect transistors. ECS J. Solid State Sci. Technol. 6(9), Q114–Q119 (2017). https://doi.org/10.1149/2.0021710jss

    Article  CAS  Google Scholar 

  19. O. Flores-Ventura, M. Courel, T.G. Sanchez, N.R. Mathews, X. Mathew, “Obtaining the solid solution Sb2S3–xSex by selenization of Sb2S3 film and identifying the thermal processing parameters to achieve recrystallization while maintaining phase-purity,.” Mater. Sci. Semicond. Process. 135, 106081 (2021). https://doi.org/10.1016/j.mssp.2021.106081

    Article  CAS  Google Scholar 

  20. D.Y.W. Yu, H.E. Hoster, S.K. Batabyal, Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries. Sci. Rep. 4, 1–6 (2014). https://doi.org/10.1038/srep04562

    Article  CAS  Google Scholar 

  21. S.I. Beril, I.G. Stamov, A.V. Tiron, V.V. Zalamai, N.N. Syrbu, Frenkel excitons and band structure in Sb2S3 single crystals. Opt. Mater. (Amst). 101, 109737 (2020). https://doi.org/10.1016/j.optmat.2020.109737

    Article  CAS  Google Scholar 

  22. C. Wu et al., Direct solution deposition of device quality Sb2S3–xSex films for high efficiency solar cells. Sol. Energy Mater. Sol. Cells 183, 52–58 (2018). https://doi.org/10.1016/j.solmat.2018.04.009

    Article  CAS  Google Scholar 

  23. P.A. Chate, S.D. Lakde, Characteristics of Sb2S3 thin films deposited by a chemical method. Int. J. Thin Film Sci. Technol. 4(3), 237–242 (2015)

    Google Scholar 

  24. A. Kyono, A. Hayakawa, M. Horiki, Selenium substitution effect on crystal structure of stibnite (Sb2S3). Phys. Chem. Miner. 42(6), 475–490 (2015). https://doi.org/10.1007/s00269-015-0737-x

    Article  CAS  Google Scholar 

  25. A. Shongalova, M.R. Correia, B. Vermang, J.M.V. Cunha, P.M.P. Salomé, P.A. Fernandes, On the identification of Sb2Se3 using Raman scattering. MRS Commun. 8(3), 865–870 (2018). https://doi.org/10.1557/mrc.2018.94

    Article  CAS  Google Scholar 

  26. F. Perales, G. Lifante, F. Agulló-Rueda, C. De Las Heras, Optical and structural properties in the amorphous to polycrystalline transition in Sb2S3 thin films. J. Phys. D Appl. Phys. 40(8), 2440–2444 (2007). https://doi.org/10.1088/0022-3727/40/8/005

    Article  CAS  Google Scholar 

  27. S.V. Bhatt, M.P. Deshpande, V. Sathe, S.H. Chaki, Effect of pressure and temperature on Raman scattering and an anharmonicity study of tin dichalcogenide single crystals. Solid State Commun. 201, 54–58 (2015). https://doi.org/10.1016/j.ssc.2014.10.009

    Article  CAS  Google Scholar 

  28. H.R. Bhoi et al., Effects of different Bismuth concentrations of InSbBi crystals grown by Bridgman technique. J. Cryst. Growth. 599, 126904 (2022). https://doi.org/10.1016/j.jcrysgro.2022.126904

    Article  CAS  Google Scholar 

  29. C.K. Gan, J.R. Soh, Y. Liu, Large anharmonic effect and thermal expansion anisotropy of metal chalcogenides: the case of antimony sulfide. Phys. Rev. B Condens. Matter Mater. Phys. 92(23), 23–26 (2015). https://doi.org/10.1103/PhysRevB.92.235202

    Article  CAS  Google Scholar 

  30. K. Chauhan, M.P. Deshpande, K.N. Patel, S.H. Chaki, S. Pandya, Structural, morphological and vibrational properties of Bi substituted Sb2S3 nanoparticles. Mater. Res. Express. 5(10), 105005 (2018). https://doi.org/10.1088/2053-1591/aadab2

    Article  CAS  Google Scholar 

  31. J. Wang, D. Chen, Y. Xu, Q. Liu, L. Zhang, Influence of the crystal texture on Raman spectroscopy of the AlN films prepared by pulse laser deposition. J. Spectrosc. (2013). https://doi.org/10.1155/2013/103602

    Article  Google Scholar 

  32. T. Tsukamoto, N. Hirose, A. Kasamatsu, T. Matsui, Y. Suda, Evaluation of crystallinity of lattice-matched Ge/GeSiSn heterostructure by Raman spectroscopy. Thin Solid Films. 726, 138646 (2021). https://doi.org/10.1016/j.tsf.2021.138646

    Article  CAS  Google Scholar 

  33. B. Roy, B.R. Chakraborty, R. Bhattacharya, A.K. Dutta, Electrical and magnetic properties of antimony sulphide (Sb2S3) crystals and the mechanism of carrier transport in it. Solid State Commun. 25(11), 937–940 (1978). https://doi.org/10.1016/0038-1098(78)90306-X

    Article  CAS  Google Scholar 

  34. B.B. Nayak, H.N. Acharya, Electrical and thermoelectric properties of Sb2S3 thin films prepared by the dip-dry method. Thin Solid Films. 122(2), 93–103 (1984). https://doi.org/10.1016/0040-6090(84)90001-4

    Article  CAS  Google Scholar 

  35. Z.M. Gibbs, H.S. Kim, H. Wang, G.J. Snyder, Band gap estimation from temperature dependent Seebeck measurement–deviations from the 2e|S|maxTmax relation. Appl. Phys. Lett. 106(2), 0–5 (2015). https://doi.org/10.1063/1.4905922

    Article  CAS  Google Scholar 

  36. B.R. Chakraborty, B. Ray, R. Bhattacharya, A.K. Dutta, Magnetic and electric properties of antimony selenide (Sb2Se3) crystals. J. Phys. Chem. Solids. 41(8), 913–917 (1980). https://doi.org/10.1016/0022-3697(80)90037-2

    Article  CAS  Google Scholar 

  37. X. Zhang et al., Band convergence and thermoelectric performance enhancement of InSb via Bi doping. Intermetallics. 139, 107347 (2021). https://doi.org/10.1016/j.intermet.2021.107347. September

    Article  CAS  Google Scholar 

  38. S. Patel, S.H. Chaki, P.C. Vinodkumar, Effect of indium and antimony doping on the transport properties of direct vapour transport (DVT) grown SnSe single crystals. J. Appl. Phys. (2018). https://doi.org/10.1063/1.5048832

    Article  Google Scholar 

  39. A.A. Abd El-Rahman, K.K. Tahoon, M.A. Abd El-Salam, A.E.S. Abd Elwahab, Temperature dependence of the thermophysical properties of polycrystalline chalcogenide glasses: mercury and antimony sulphides. J. Therm. Anal. 47(6), 1719–1728 (1996). https://doi.org/10.1007/bf01980917

    Article  CAS  Google Scholar 

  40. L.V. Prokofieva, D.A. Pshenay-Severin, P.P. Konstantinov, A.A. Shabaldin, Optimum composition of a Bi2Te3–xSex alloy for the n-type leg of a thermoelectric generator. Semiconductors 43(8), 973–976 (2009). https://doi.org/10.1134/S1063782609080016

    Article  CAS  Google Scholar 

  41. Z. Chen et al., Thermoelectric properties and thermal stability of bi-doped PbTe single crystal. Phys. B Condens. Matter. 538, 154–159 (2018). https://doi.org/10.1016/j.physb.2018.03.033

    Article  CAS  Google Scholar 

  42. R. Basu et al., Improved thermoelectric performance of hot pressed nanostructured n-type SiGe bulk alloys. J. Mater. Chem. A 2, 6922–6930 (2014). https://doi.org/10.1039/c3ta14259k

    Article  CAS  Google Scholar 

  43. C.H. Su, Thermal stability of melt grown Tl-doped PbTeSe material for thermoelectric applications. Mater. Sci. Semicond. Process. 56, 94–99 (2016). https://doi.org/10.1016/j.mssp.2016.07.024

    Article  CAS  Google Scholar 

  44. R.H. Bube, Photoelectronic analysis of high resistivity crystals: (A) GaAs, (b) Sb2S3. J. Appl. Phys. 31(2), 315–322 (1960). https://doi.org/10.1063/1.1735564

    Article  CAS  Google Scholar 

  45. B.G. Valmik et al., Investigation and fabrication of cadmium telluride (CdTe) single crystal as a photodetector. Phys. B Condens. Matter 614, 413027 (2021). https://doi.org/10.1016/j.physb.2021.413027

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the Sophisticated Instrumentation Centre for Applied Research and Technology, (SICART), V. V. Nagar, Gujarat, India, for the characterization of samples by EDAX and XRD. The authors are thankful to the University Science and Instrumentation Centre (USIC), Sardar Patel University, V. V. Nagar, Gujarat, India, for the preparation and vacuum sealing of the quartz ampoule.

Funding

The authors have no relevant funding to disclose.

Author information

Authors and Affiliations

Authors

Contributions

Writing original draft, Data curation, Formal analysis and Methodology: HRB, Supervision, Visualization and Writing review & editing: MPD, Conceptualization, Formal analysis and Methodology: SVB, Formal analysis and Resources: PR, Software and Investigation: SP, Formal analysis and Data curation: YVJ, Formal analysis and Data curation: ZRP, Formal analysis and Visualization: NMS, Data curation and Validation: V.GS, Formal analysis and Resources: SHC.

Corresponding author

Correspondence to Hiteshkumar R. Bhoi.

Ethics declarations

competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhoi, H.R., Deshpande, M.P., Bhatt, S.V. et al. Investigation of thermoelectric properties and photoresponse of Sb2S3−xSex crystals grown by Bridgman technique. J Mater Sci: Mater Electron 34, 1217 (2023). https://doi.org/10.1007/s10854-023-10631-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10631-3

Navigation