Skip to main content
Log in

Optical and photoluminescence response driven by sintering temperature in LaFeO3 nano-perovskites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this report, we synthesized LaFeO3 nano-perovskite compounds using conventional sol–gel techniques at three different sintering temperatures of 550, 650, and 750 °C. This study investigated how sintering temperature affects various properties, including structural, microstructural, vibrational, optical, and photoluminescence properties. Rietveld-fitted X-ray diffraction study confirmed that all reported compounds exhibited orthorhombic symmetry, with Pbma space group, and no identifiable impurity or secondary phase. The lattice parameters increased with rising sintering temperature, as estimated using the Hall–Williamson method for crystalline size determination. Scanning electron microscopy (SEM) images revealed the formation of particles with a spherical shape/size and a flake-like grain structure. The particle size distribution results were similar to the crystalline size. Fourier transform infrared (FTIR) spectroscopy techniques were utilized to explore the vibration modes of Fe–O and the presence of distinct functional groups. Tauc's plot was also used to analyze the absorbance and optical band gap using UV–vis absorption spectroscopy. The optical band gap increased with the rising sintering temperature. We conducted a photoluminescence study to recognize oxygen vacancies and defects of the synthesized compounds. These imperfections cause lattice disorder and a shift in the energy band gap from the ultraviolet to the visible spectrum region, which affects electronic transitions. The synthesized compounds exhibited CIE (Commission Internationale de l’éclairage) chromaticity coordinates in the blue region, making them potentially useful in optical and display devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared as the data also forms part of an ongoing study.

References

  1. A. Modi, M.A. Bhat, S. Bhattacharya, G.S. Okram, N.K. Gaur, J. Appl. Phys. 123, 205114 (2018)

    Article  Google Scholar 

  2. O. Polat, M. Coskun, P. Roupcova, D. Sobola, Z. Durmus, M. Caglar, T. Sikola, A. Turut, J. Alloy Compd. 911, 165035 (2022)

    Article  CAS  Google Scholar 

  3. S. Das, S. Dutta, A. Mistry Tama, M.A. Basith, Mater. Sci. Eng. B 271, 115295 (2021)

    Article  CAS  Google Scholar 

  4. D. Triyono, U. Hanifah, H. Laysandra, Results Phys. 16, 102995 (2020)

    Article  Google Scholar 

  5. M. Pidburtnyi, B. Zanca, C. Coppex, S. Jimenez-Villegas, V. Thangadurai, Chem. Mater. 33, 4249–4268 (2021)

    Article  CAS  Google Scholar 

  6. G.H. Zhang, Q. Chen, X.Y. Deng, H.Y. Jiao, P.Y. Wang, D.J. Gengzang, Mater. Lett. 236, 229–232 (2019)

    Article  CAS  Google Scholar 

  7. J.N. Kuhn, U.S. Ozkan, Catal. Lett. 121, 179–188 (2008)

    Article  CAS  Google Scholar 

  8. M.M. Natile, A. Ponzoni, I. Concina, A. Glisenti, Chem. Mater. 26, 1505–1513 (2014)

    Article  CAS  Google Scholar 

  9. N.Y. Tashkandi, S.M. Albukhari, A.A. Ismail, J. Photochem. Photobiol. 432, 114078 (2022)

    Article  CAS  Google Scholar 

  10. Y.J. Xu, S.Y. Song, C.X. Li, B. Hong, D.S. Shi, J.C. Xu, Y.B. Han, H.X. Jin, D.F. Jin, X.L. Peng, J. Gong, H.L. Ge, X.Q. Wang, Mater. Chem. Phys. 267, 124628 (2021)

    Article  CAS  Google Scholar 

  11. R. Dhinesh Kumar, R. Thangappan, R. Jayavel, J. Phys. Chem. Solids. 101, 25–33 (2017)

    Article  CAS  Google Scholar 

  12. P. Jain, O. Subohi, S. Dayal, S. Srivastava, Mater. Res. Bull. 120, 110593 (2019)

    Article  CAS  Google Scholar 

  13. A. Benali, M. Bejar, E. Dhahri, M. Sajieddine, M.P.F. Graca, M.P.F. Graca, M.A. Valente, Mater. Chem. Phys. 149, 467 (2015)

    Article  Google Scholar 

  14. N. Sharma, S.K. Sharma, K. Sachdev, Ceram. Int. 45, 7217–7225 (2019)

    Article  CAS  Google Scholar 

  15. H. Shen, G. Cheng, A. Wu, J. Xu, J. Zhao, Phys. Status Solidi A 206, 1420–1424 (2009)

    Article  CAS  Google Scholar 

  16. M. Sivakumar, A. Gedanken, W. Zhong, Y.H. Jiang, Y.W. Du, I. Brukental, D. Bhattacharya, Y. Yeshurun, I. Nowikd, J. Mater. Chem. 14, 764–769 (2004)

    Article  CAS  Google Scholar 

  17. S. Acharya, G. Swain, K.M. Parida, Int. J. Hydrog Energy. 45, 11502–11511 (2020)

    Article  CAS  Google Scholar 

  18. R.K. Raji, V.K.T. Ramachandran, M. Muralidharan, R. Suriakarthick, M. Dhilip, F. Hamed, J. Mater. Sci. : Mater. Electron. 31, 7998 (2020)

    CAS  Google Scholar 

  19. Y. Ye, H. Yang, R. Li, X. Wang, J., Sol-gel Sci. Technol. 82, 509–518 (2017)

    Article  CAS  Google Scholar 

  20. F. Tong, Y. Zhao, M. Wang, Micro Nano Lett. 14, 259–262 (2019)

    Article  CAS  Google Scholar 

  21. S. Guan, R. Li, X. Sun, T. Xian, H. Yang, Mater. Technol. 36, 603–615 (2020)

    Article  Google Scholar 

  22. M. Kaewpanha, T. Suriwong, W. Wamae, P. Nunocha, J. Phys. Conf. Ser. 1259, 012017 (2019)

    Article  CAS  Google Scholar 

  23. R.V. Lakshmi, P. Bera, M. Hiremath, V. Dubey, A.K. Kundu, H.C. Barshilia, Phys. Chem. Chem. Phys. 24, 5462–5478 (2022)

    Article  CAS  Google Scholar 

  24. B.M. Pirzada, R.K. Pushpendra, Kunchala, B.S. Naidu, ACS Omega. 4, 2618–2629 (2019)

    Article  CAS  Google Scholar 

  25. K. Duangsa, A. Tangtrakarn, C. Mongkolkachit, P. Aungkavattana, K. Moolsarn, Adv. Mater. Sci. Eng. 2021, 5592437 (2021)

    Article  Google Scholar 

  26. A. Modi, M.A. Bhat, S. Bhattacharya, N.K. Gaur, J. Mater. Sci: Mater. Electron. 27, 8899–8905 (2016)

    CAS  Google Scholar 

  27. A. Modi, M.A. Bhat, D.K. Pandey, N.K. Gaur, Mater. Lett. 276, 128212 (2020)

    Article  CAS  Google Scholar 

  28. E. Cao, A. Wu, H. Wang, Y. Qin, Y. Zhang, W. Hao, Li. Sun, Appl. Phy. A 125, 40 (2019)

    Article  Google Scholar 

  29. Q. Liu, Z. You, S.J. Zeng, H. Guo, J. Sol-Gel Sci. Technol. 80, 860–866 (2016)

    Article  CAS  Google Scholar 

  30. K. Dubey, S. Dubey, V. Sahu, A. Modi, J. Bamne, F.Z. Haque, N.K. Gaur, Mater. Sci. Eng. B 288, 116154 (2023)

    Article  CAS  Google Scholar 

  31. P.C. Pistorius, N. Verma, Microsc. Microanal. 17, 963–971 (2011)

    Article  CAS  Google Scholar 

  32. P. Tang, Y. Tong, H. Chen, F. Cao, G. Pan, Curr. Appl. Phys. 13, 340–343 (2013)

    Article  Google Scholar 

  33. Q. Lin, X. Yang, J. Lin, Z. Guo, Y. He, Int. J. Hydrog Energy. 43, 12720–12729 (2018)

    Article  CAS  Google Scholar 

  34. N. Sharma, H.S. Kushwaha, S.K. Sharma, K. Sachdev, RSC Adv. 10, 1297 (2010)

    Article  Google Scholar 

  35. Y. Li, L. Hu, B. Yang, M. Shi, J. Zou, J. Mater. Sci. : Mater. Electron. 29, 2035–2039 (2018)

    CAS  Google Scholar 

  36. B.S. Sahu, F. Delachat, A. Slaoui, M. Carrada, G. Ferblantier, D. Muller, Nanoscale Res. Lett. 6, 178 (2011)

    Article  Google Scholar 

  37. M. Venugopal, H. Padma Kumar, R. Satheesh, Phys. Lett. A 384, 126280 (2020). R. Jayakrishnan

    Article  CAS  Google Scholar 

  38. G. Fan, Z. Chen, Z. Yan, B. Du, H. Pang, D. Tang, J. Luo, J. Lin, J. Hazard. Mater. 409, 125018 (2021)

    Article  CAS  Google Scholar 

  39. B.S. Soram, B.S. Ngangom, H.B. Sharma, Thin Solid Films. 524, 57–61 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support by the Department of Science and Technology under the Women Scientist Scheme to RY is gratefully acknowledged. We thank Dr. Mukul Gupta (UGC-DAE Consortium for Scientific Research, Indore) and Prof. Fozia Z. Haque (Department of Physics, Maulana Azad National Institute of Technology, Bhopal) for providing access to experimental facilities.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

RY contributed to the study’s conceptualization, methodology, investigation, and data curation. AM contributed to the writing of the original draft. KD contributed to the formal analysis and reviewing and editing of the manuscript. MM contributed to the manuscript’s conceptualization, supervision, and reviewing and editing of the manuscript.

Corresponding authors

Correspondence to Rashmi Yadav or Anchit Modi.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, R., Modi, A., Dubey, K. et al. Optical and photoluminescence response driven by sintering temperature in LaFeO3 nano-perovskites. J Mater Sci: Mater Electron 34, 1243 (2023). https://doi.org/10.1007/s10854-023-10630-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10630-4

Navigation