Skip to main content
Log in

Structural, characterization, and linear/nonlinear optical behavior of polyaniline/cellulose acetate composite films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The purpose of this study is on developing innovative physicochemical characteristics of flexible composite films for usage in outstanding performance optoelectronics products. This work illustrates the effects of conducting polyaniline (PANI) on the structural and optical characteristics of cellulose acetate (CA). The CA/PANI were successfully synthesized by solution fabrication casting method as demonstrated by XRD, EDX, SEM, and FTIR techniques. The XRD of CA/PANI films recorded the broadness and reduction of peaks intensity with increasing PANI. This is attributed to the intermolecular interactions of CA and PANI. The FTIR recorded a decrease in the intensities of CA/PANI, indicating the successful incorporation of PANI in CA. The surface morphology is investigated by SEM to record the homogenous distribution of PANI in CA. Moreover, the optical behavior of the samples was recorded by UV/Vis spectroscopy in wavelength 190 to 1150 nm. The absorption edge, band tail, band gap, and number of carbon cluster were estimated. By increase PANI content from 2 to 6%, the band gap is reduce from 5.17 to 4.02 eV and the band tail is changed from 0.84 to 3.96 eV. In addition, carbon clusters number is enhanced from 44 to 73. Moreover, the optical coefficients such coefficient of extinction, refractive index were computed. Furthermore, the Wemple/Di-Domenico is used to record the dispersion parameters of CA and CA/PANI films. The results indicate the PANI induced modifications on the linear/nonlinear characteristics of CA films for used these samples in optoelectronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A. Atta, H. Negm, E. Abdeltwab, M. Rabia, M.M. Abdelhamied, Facile fabrication of polypyrrole/NiOx core‐shell nanocomposites for hydrogen production from wastewater. Polymers for Advanced Technologies (2023)

  2. A.M. Mohamed, H.R. Alamri, M.A. Hamad, Investigation on Giant Electrocaloric Properties in Ferroelectric Polymer P (VDF-TrFE)(65/35). Russ. J. Phys. Chem. A 96(10), 2259–2264 (2022)

    Article  CAS  Google Scholar 

  3. N.A. Althubiti, A. Atta, B.M. Alotaibi, M.M. Abdelhamied, Structural and dielectric properties of ion beam irradiated polymer/silver composite films. Surf. Innov. 4, 1–11 (2022)

    Google Scholar 

  4. M. Almasoudi, M.S. Zoromba, M.H. Abdel-Aziz, M. Bassyouni, A. Alshahrie, A.M. Abusorrah, N. Salah, Optimization preparation of one-dimensional polypyrrole nanotubes for enhanced thermoelectric performance. Polymer 228, 123950 (2021)

    Article  CAS  Google Scholar 

  5. A.A. Ahmad Fauzi, A.F. Osman, A.A. Alrashdi, Z. Mustafa, K.A. Abdul Halim, On the use of dolomite as a mineral filler and co-filler in the field of polymer composites: a review. Polymers 14(14), 2843 (2022)

    Article  CAS  Google Scholar 

  6. A.N. Alahmadi, Design of an efficient PTB7: PC70BM-based polymer solar cell for 8% efficiency. Polymers 14(5), 889 (2022)

    Article  CAS  Google Scholar 

  7. Nawas Mumthas, I. N., Mohamad Noh, M. F., Arzaee, N. A., Mohamed, N. A., Mohd Nasir, S. N. F., Alessa, H., ... & Mat Teridi, M. A. (2021). Improving the stability and efficiency of polymer solar cells by γ‐radiated graphitic carbon nitride. International Journal of Energy Research, 45(10), 15284–15297.

  8. M.M. Abdelhamied, A. Atta, A.M. Abdelreheem, A.T.M. Farag, M.M. El Okr, Synthesis and optical properties of PVA/PANI/Ag nanocomposite films. J. Mater. Sci.: Mater. Electron. 31(24), 22629–22641 (2020)

    CAS  Google Scholar 

  9. G. Ashour, M. Hussein, T. Sobahi, (2021) Nanocomposite containing polyamide and GNS for enhanced properties. Synthesis and characterization. J. Umm Al-Qura Univ. Appl. Sci. 7(1), 1–6 (2021)

    Google Scholar 

  10. Iqubal, S. M. (2022). Characterization, surface morphology and microstructure of water soluble colloidal MnO2 nanoflakes. Journal of Umm Al-Qura University for Applied Sciences, 1–4.Conducting polymers: Concepts and applications

  11. Z.A.G. Ahmed, S.H. Hussein-Al-Ali, I.A.A. Ibrahim, M.K. Haddad, D.K. Ali, A.M. Hussein, A.A. Abu Sharar, Development and evaluation of amlodipine-polymer nanocomposites using response surface methodology. Int. J. Polym. Sci. 2022, 1–15 (2022)

    Article  CAS  Google Scholar 

  12. B.M. Alotaibi, H.A. Al-Yousef, N.A. Alsaif, A. Atta, Characterization and optical properties of polymer nanocomposite films for optoelectronic applications. Surface Innovations 40, 1–13l (2022)

    Google Scholar 

  13. A. Atta, B.M. Alotaibi, M.M. Abdelhamied, Structural characteristics and optical properties of methylcellulose/polyaniline films modified by low energy oxygen irradiation. Inorg. Chem. Commun. 141, 109502 (2022)

    Article  CAS  Google Scholar 

  14. B.M. Alotaibi, H.A. Al-Yousef, N.A. Alsaif, A. Atta, Oxygen beam induced modifications on the structural characteristics and physico-chemical properties of PANI/lead sulfide composite films. Inorg. Chem. Commun. 144, 109904 (2022)

    Article  CAS  Google Scholar 

  15. A.K. Rana, V.K. Gupta, A.K. Saini, S.I. Voicu, M.H. Abdellattifaand, V.K. Thakur, Water desalination using nanocelluloses/cellulose derivatives based membranes for sustainable future. Desalination 520, 115359 (2021)

    Article  CAS  Google Scholar 

  16. A.K. Rana, Y.K. Mishra, V.K. Gupta, V.K. Thakur, Sustainable materials in the removal of pesticides from contaminated water: perspective on macro to nanoscale cellulose. Sci. Total Environ. 797, 149129 (2021)

    Article  CAS  Google Scholar 

  17. S. Le Hoang, C.M. Vu, L.T. Pham, H.J. Choi, Preparation and physical characteristics of epoxy resin/bacterial cellulose biocomposites. Polym. Bull. 75(6), 2607–2625 (2018)

    Article  CAS  Google Scholar 

  18. A. Pappu, K.L. Pickering, V.K. Thakur, Manufacturing and characterization of sustainable hybrid composites using sisal and hemp fibres as reinforcement of poly (lactic acid) via injection moulding. Ind. Crops Prod. 137, 260–269 (2019)

    Article  CAS  Google Scholar 

  19. T.A. Taha, N. Hendawy, S. El-Rabaie, A. Esmat, M.K. El-Mansy, Effect of NiO NPs doping on the structure and optical properties of PVC polymer films. Polym. Bull. 76, 4769–4784 (2019)

    Article  CAS  Google Scholar 

  20. B.H. Rabee, study the optical and mechanical properties for (PVA-AgCO3) composites. Eur. J. Sci. Res. 57(4), 583–591 (2011)

    Google Scholar 

  21. A. Atta, M.M. Abdelhamied, D. Essam, M. Shaban, A.H. Alshammari, M. Rabia, Structural and physical properties of polyaniline/silver oxide/silver nanocomposite electrode for supercapacitor applications. Int. J. Energy Res. 46(5), 6702–6710 (2022)

    Article  CAS  Google Scholar 

  22. A.K. Rana, F. Scarpa, V.K. Thakur, Cellulose/polyaniline hybrid nanocomposites: Design, fabrication, and emerging multidimensional applications. Ind. Crops Prod. 187, 115356 (2022)

    Article  CAS  Google Scholar 

  23. S. Monisha, S. Selvasekarapandian, T. Mathavan, A. Milton Franklin Benial, S. Manoharan, S. Karthikeyan, Preparation and characterization of biopolymer electrolyte based on cellulose acetate for potential applications in energy storage devices. J. Mater. Sci.: Mater. Electron. 27(9), 9314–9324 (2016)

    CAS  Google Scholar 

  24. S. Ramesh, R. Shanti, E. Morris, Characterization of conducting cellulose acetate based polymer electrolytes doped with “green” ionic mixture. Carbohydr. Polym. 91(1), 14–21 (2013)

    Article  CAS  Google Scholar 

  25. A. John, S.K. Mahadeva, J. Kim, The preparation, characterization and actuation behavior of polyaniline and cellulose blended electro-active paper. Smart Mater. Struct. 19(4), 045011 (2010)

    Article  Google Scholar 

  26. J. Prakash, K.S. Venkataprasanna, G. Bharath, F. Banat, R. Niranjan, G.D. Venkatasubbu, In-vitro evaluation of electrospun cellulose acetate nanofiber containing graphene oxide/TiO2/curcumin for wound healing application. Colloids Surf. A 627, 127166 (2021)

    Article  CAS  Google Scholar 

  27. S. Wu, X. Qin, M. Li, The structure and properties of cellulose acetate materials: a comparative study on electrospun membranes and casted films. J. Ind. Text. 44(1), 85–98 (2014)

    Article  CAS  Google Scholar 

  28. H. Cortina, C. Martínez-Alonso, M. Castillo-Ortega, H. Hu, Cellulose acetate fibers covered by CdS nanoparticles for hybrid solar cell applications. Mater. Sci. Eng. B 177(16), 1491–1496 (2012)

    Article  CAS  Google Scholar 

  29. A. Mostafaei, A. Zolriasatein, Progress in natural science: materials international synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods. Prog. Nat. Sci. Mater. Int. 22(4), 273–280 (2012)

    Article  Google Scholar 

  30. S. Eslah, M. Nouri, Fabrication of electrically conductive cellulose acetate/polyaniline/WO3 nanocomposite nanofibers with potential applications in electrochemical devices. Polym. Sci. Ser. A 61, 345–356 (2019)

    Article  Google Scholar 

  31. S.M. Ebrahim, A.B. Kashyout, M.M. Soliman, Electrical and structural properties of polyaniline/cellulose triacetate blend films. J. Polym. Res. 14(5), 423–429 (2007)

    Article  CAS  Google Scholar 

  32. R. Rajini, U. Venkateswarlu, C. Rose, T.P. Sastry, Studies on the composites of cellulose triacetate (prepared from sugar cane pulp) and gelatin. J. Appl. Polym. Sci. 82(4), 847–853 (2001)

    Article  CAS  Google Scholar 

  33. T. Sudiarti, D. Wahyuningrum, B. Bundjali, I.M. Arcana. (2017, July). Mechanical strength and ionic conductivity of polymer electrolyte membranes prepared from cellulose acetate-lithium perchlorate. In IOP Conference Series: Materials Science and Engineering (Vol. 223, No. 1, p. 012052). IOP Publishing.

  34. B. Han, D. Zhang, Z. Shao, L. Kong, S. Lv, Preparation and characterization of cellulose acetate/carboxymethyl cellulose acetate blend ultrafiltration membranes. Desalination 311, 80–89 (2013)

    Article  CAS  Google Scholar 

  35. A.M. Stephan, T.P. Kumar, N.G. Renganathan, S. Pitchumani, R. Thirunakaran, N. Muniyandi, Ionic conductivity and FT-IR studies on plasticized PVC/PMMA blend polymer electrolytes. J. Power Sources 89(1), 80–87 (2000)

    Article  CAS  Google Scholar 

  36. S. Gopi, A. Pius, R. Kargl, K.S. Kleinschek, S. Thomas, Fabrication of cellulose acetate/chitosan blend films as efficient adsorbent for anionic water pollutants. Polym. Bull. 76(3), 1557–1571 (2019)

    Article  CAS  Google Scholar 

  37. C.V.S. Rao, M. Ravi, V. Raja, P.B. Bhargav, A.K. Sharma, V.N. Rao, Preparation and characterization of PVP-based polymer electrolytes for solid-state battery applications. Iran. Polym. J. 21(8), 531–536 (2012)

    Article  Google Scholar 

  38. N. Al-Harbi, A. Atta, R.K. Sendi, N.A. Althubiti, M.M. Abdelhamied, Surface characterization and linear/nonlinear optical properties of irradiated flexible PVA/ZnO polymeric nanocomposite materials. Opt. Quant. Electron. 55(5), 409 (2023)

    Article  CAS  Google Scholar 

  39. N.A. Althubiti, A. Atta, N. Al-Harbi, R.K. Sendi, M.M. Abdelhamied, Structural, characterization and linear/nonlinear optical properties of oxygen beam irradiated PEO/NiO composite films. Opt. Quant. Electron. 55(4), 348 (2023)

    Article  CAS  Google Scholar 

  40. T. Taha, A. Saleh, Dynamic mechanical and optical characterization of PVC/fGO polymer nanocomposites. Appl. Phys. A 124, 600 (2018)

    Article  Google Scholar 

  41. S.A. Kakil, B.N. Sabr, L.S. Hana, T.A.H. Abbas, S.Y. Hussin, Effects of a low dose of gamma radiation on the morphology, and the optical and the electrical properties of an ITO thin film as an electrode for solar cell applications. J. Korean Phys. Soc. 72(5), 561–569 (2018)

    Article  CAS  Google Scholar 

  42. Z.A. Alrowaili, T.A. Taha, K.S. El-Nasser, H. Donya, Significant enhanced optical parameters of PVA-Y2O3 polymer nanocomposite films. J. Inorg. Organomet. Polym Mater. 31(7), 3101–3110 (2021)

    Article  CAS  Google Scholar 

  43. C.O. Obasi, A.S. Ahmad, I.L. Ikhioya, A.M. Ramalan, Effect of gamma radiation (60co) on the optical transmittance, energy band gap and absorption coefficient of Znse thin films. Int. J. Eng. Appl. Sci. Technol. 4(8), 224–228 (2019)

    Google Scholar 

  44. S. Banerjee, A. Kumar, Swift heavy ion irradiation induced modifications in the optical band gap and Urbach’s tail in polyaniline nanofibers. Nucl. Instrum. Methods Phys. Res. Sect. B 269(23), 2798–2806 (2011)

    Article  CAS  Google Scholar 

  45. T. Taha, Z. Ismail, M. Elhawary, Structural, optical and thermal characterization of PVC/SnO2 nanocomposites. Appl. Phys. A 124, 307 (2018)

    Article  Google Scholar 

  46. H. Donya, T.A. Taha, A. Alruwaili, I.B.I. Tomsah, M. Ibrahim, Micro-structure and optical spectroscopy of PVA/iron oxide polymer nanocomposites. J. Market. Res. 9(4), 9189–9194 (2020)

    CAS  Google Scholar 

  47. M. Abd El-Rahman, K.M. Yassien, A.A. Yassene, Effect of gamma irradiation on the optical properties of epoxy resin thin films. Optik 183, 962–970 (2019)

    Article  CAS  Google Scholar 

  48. H.S. Rasheed, I.A. Abbas, A.J. Kadhum, H.C. Maged, The effect of gamma irradiation on the optical properties of (PVA-PAA-Al2O3) films. In AIP Conference Proceedings, AIP Publishing LLC 2190, 020013 (2019)

    Article  Google Scholar 

  49. S.R. Alharbi, K.F.A. El-Rahman, Gamma irradiation effects on the linear and nonlinear optical properties of noncrystalline Sb2S3 films. Chalcogenide Lett. 14(12), 529–537 (2017)

    CAS  Google Scholar 

  50. J.H. Al-Zahrani, M. El-Hagary, A. El-Taher, Gamma irradiation induced effects on optical properties and single oscillator parameters of Fe-doped CdS diluted magnetic semiconductors thin films. Mater. Sci. Semicond. Process. 39, 74–78 (2015)

    Article  CAS  Google Scholar 

  51. M.M. El-Nahass, A.A.M. Farag, F. Abd-El-Salam, Effect of gamma irradiation on the optical properties of nano-crystalline InP thin films. Appl. Surf. Sci. 255(23), 9439–9443 (2009)

    Article  CAS  Google Scholar 

  52. T.K. Hamad, Refractive index dispersion and analysis of the optical parameters of (PMMA/PVA) Thin film. Al-Nahrain J. Sci. 16(3), 164–170 (2013)

    Google Scholar 

  53. T.J. Alwan, Gamma irradiation effect on the optical properties and refractive index dispersion of dye doped polystyrene films. Turk. J. Phys. 36(3), 377–384 (2012)

    CAS  Google Scholar 

  54. A.M. El Sayed, S. El-Sayed, W.M. Morsi, S. Mahrous, A. Hassen, Synthesis, characterization, optical, and dielectric properties of polyvinyl chloride/cadmium oxide nanocomposite films. Polym. Compos. 35(9), 1842–1851 (2014)

    Article  Google Scholar 

  55. I. Saadeddin, B. Pecquenard, J.P. Manaud, R. Decourt, C. Labrugère, T. Buffeteau, G. Campet, Synthesis and characterization of single-and co-doped SnO2 thin films for optoelectronic applications. Appl. Surf. Sci. 253(12), 5240–5249 (2007)

    Article  CAS  Google Scholar 

  56. M. Frumar, J. Jedelský, B. Frumarova, T. Wagner, M. Hrdlička, Optically and thermally induced changes of structure, linear and non-linear optical properties of chalcogenides thin films. J. Non-Cryst. Solids 326, 399–404 (2003)

    Article  Google Scholar 

  57. H. Ticha, L. Tichy, Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. 4(2), 381–386 (2002)

    CAS  Google Scholar 

  58. D.R. Kanis, M.A. Ratner, T.J. Marks, M.C. Zerner, Nonlinear optical characteristics of novel inorganic chromophores using the Zindo formalism. Chem. Mater. 3(1), 19–22 (1991)

    Article  CAS  Google Scholar 

  59. H.E. Ali, H.S. Abd-Rabboh, N.S. Awwad, H. Algarni, M.A. Sayed et al., Photoluminescence, optical limiting, and linear/nonlinear optical parameters of PVP/PVAL blend embedded with silver nitrate. Optik 247, 167863 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number: IFP22UQU4320081DSR017

Author information

Authors and Affiliations

Authors

Contributions

AA and MR wrote the main results. MMA and AA reviewed the manuscript. NA-H and MAH shared the funding. All authors read and approved the final manuscript.

Corresponding author

Correspondence to A. Atta.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable (The Research is not involving the studies on human or their data.)

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Harbi, N., Atta, A., Henaish, A.M.A. et al. Structural, characterization, and linear/nonlinear optical behavior of polyaniline/cellulose acetate composite films. J Mater Sci: Mater Electron 34, 1215 (2023). https://doi.org/10.1007/s10854-023-10598-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10598-1

Navigation