Skip to main content

Advertisement

Log in

Effect of Bi0.2Sr0.7SnO3 doping on NaNbO3-based ceramics: enhanced ferroelectric, dielectric, and energy storage performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

NaNbO3-based antiferroelectric ceramics are considered to be popular candidates for lead-free dielectric capacitors. However, the instability of the antiferroelectric phase of pure NaNbO3 (NN) ceramics under high electric fields leads to poor energy storage density and efficiency. Therefore, in order to stabilize the antiferroelectric phase of NN, (1 − x)NaNbO3-xBi0.2Sr0.7SnO3 [(1 − x)NN-xBSS] (x = 0.06–0.20) system was successfully prepared by the solid-state reaction method. The solid solution transforms from the antiferroelectric phase (AFE) to the paraelectric phase (PE) with increasing BSS doping. In addition, the Curie temperature (Tm) changes abruptly from nearly 250 °C to − 120 °C at x = 0.10 and exhibits relaxation behavior. The best performance with a recoverable energy density (Wrec) of 0.80 J/cm3 and efficiency (η) of 80.2% in this system is obtained simultaneously at 180 kV/cm in the component with x = 0.10. Furthermore, the 0.90NN-0.10BSS ceramic has good frequency stability. This work provides a new doping strategy and systematically investigates phase structure, microscopic morphology, and macroscopic electrical properties of (1 − x)NN-xBSS ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article.

References

  1. K. Zou, Y. Dan, H. Xu, Q. Zhang, Y. Lu, H. Huang, Y. He, Mater. Res. Bull. 113, 190–201 (2019). https://doi.org/10.1016/j.materresbull.2019.02.002

    Article  CAS  Google Scholar 

  2. F. Li, J. Zhai, B. Shen, H. Zeng, J. Adv. Dielectr. 08, 1830005 (2018). https://doi.org/10.1142/S2010135X18300050

    Article  CAS  Google Scholar 

  3. D. Hou, H. Fan, A. Zhang, Y. Chen, F. Yang, Y. Jia, H. Wang, Q. Quan, W. Wang, Ceram. Int. 47, 34059–34067 (2021). https://doi.org/10.1016/j.ceramint.2021.08.315

    Article  CAS  Google Scholar 

  4. P. Zhao, Z. Cai, L. Chen, L. Wu, Y. Huan, L. Guo, L. Li, H. Wang, X. Wang, Energ. Environ. Sci. 13, 4882–4890 (2020). https://doi.org/10.1039/D0EE03094E

    Article  CAS  Google Scholar 

  5. H. Qi, A. Xie, A. Tian, R. Zuo, Adv. Energy Mater. 10, 1903338 (2020). https://doi.org/10.1002/aenm.201903338

    Article  CAS  Google Scholar 

  6. K. Han, N. Luo, S. Mao, F. Zhuo, L. Liu, B. Peng, X. Chen, C. Hu, H. Zhou, Y. Wei, J. Mater. Chem. A 7, 26293–26301 (2019). https://doi.org/10.1039/C9TA06457E

    Article  CAS  Google Scholar 

  7. X. Hao, J. Adv. Dielectr. (2013). https://doi.org/10.1142/S2010135X13300016

    Article  Google Scholar 

  8. Z. Dai, J. Xie, W. Liu, X. Wang, L. Zhang, Z. Zhou, J. Li, X. Ren, ACS Appl. Mater. Interfaces 12, 30289–30296 (2020). https://doi.org/10.1021/acsami.0c02832

    Article  CAS  Google Scholar 

  9. N. Luo, K. Han, M.J. Cabral, X. Liao, S. Zhang, C. Liao, G. Zhang, X. Chen, Q. Feng, J.-F. Li, Y. Wei, Nat. Commun. 11, 4824 (2020). https://doi.org/10.1038/s41467-020-18665-5

    Article  CAS  Google Scholar 

  10. Q. Yuan, G. Li, F.-Z. Yao, S.-D. Cheng, Y. Wang, R. Ma, S.-B. Mi, M. Gu, K. Wang, J.F. Li, H. Wang, Nano Energy. 52, 203–210 (2018). https://doi.org/10.1016/j.nanoen.2018.07.055

    Article  CAS  Google Scholar 

  11. H. Qi, R. Zuo, A. Xie, J. Fu, D. Zhang, J. Eur. Ceram. Soc. 39, 3703–3709 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.05.043

    Article  CAS  Google Scholar 

  12. J. Wang, H. Fan, M. Wang, P. Fan, Ceram. Int. 47, 17964–17970 (2021). https://doi.org/10.1016/j.ceramint.2021.03.110

    Article  CAS  Google Scholar 

  13. Y. Tian, L. Jin, H. Zhang, Z. Xu, X. Wei, G. Viola, I. Abrahams, H. Yan, J. Eur. Ceram. Soc. 5, 17525–17531 (2017). https://doi.org/10.1039/C7TA03821F

    Article  CAS  Google Scholar 

  14. L. Zhao, Q. Liu, S. Zhang, J.F. Li, J. Mater. Chem. C 4, 8380–8384 (2016). https://doi.org/10.1039/C6TC03289C

    Article  CAS  Google Scholar 

  15. Y. Tian, L. Jin, H. Zhang, Z. Xu, X. Wei, E.D. Politova, S.Y. Stefanovich, N.V. Tarakina, I. Abrahams, H. Yan, J. Mater. Chem. A 4, 17279–17287 (2016). https://doi.org/10.1039/C6TA06353E

    Article  CAS  Google Scholar 

  16. J. Gao, L. Zhao, Q. Liu, X. Wang, S. Zhang, J.F. Li, J. Am. Ceram. Soc. 101, 5443–5450 (2018). https://doi.org/10.1111/jace.15780

    Article  CAS  Google Scholar 

  17. H. Guo, H. Shimizu, C.A. Randall, Appl. Phys. Lett. 107, 112904 (2015). https://doi.org/10.1063/1.4930067

    Article  CAS  Google Scholar 

  18. D. Yang, J. Gao, L. Shu, Y.X. Liu, J. Yu, Y. Zhang, X. Wang, B.P. Zhang, J.F. Li, J. Mater. Chem. A 8, 23724–23737 (2020). https://doi.org/10.1039/D0TA08345C

    Article  CAS  Google Scholar 

  19. Y.I. Yuzyuk, P. Simon, E. Gagarina, L. Hennet, D. Thiaudière, V.I. Torgashev, S.I. Raevskaya, I.P. Raevskii, L.A. Reznitchenko, J.L. Sauvajol, J. Phys. : Condens. Matter. 17, 4977 (2005). https://doi.org/10.1088/0953-8984/17/33/003

    Article  CAS  Google Scholar 

  20. A. Xie, H. Qi, R. Zuo, ACS Appl. Mater. Interfaces 12, 19467–19475 (2020). https://doi.org/10.1021/acsami.0c00831

    Article  CAS  Google Scholar 

  21. S. Li, P. Shi, X. Zhu, B. Yang, X. Zhang, R. Kang, Q. Liu, Y. Gao, H. Sun, X. Lou, J. Mater. Sci. 56, 11922–11931 (2021). https://doi.org/10.1007/s10853-021-06075-x

    Article  CAS  Google Scholar 

  22. J. Shi, X. Chen, X. Li, J. Sun, C. Sun, F. Pang, H. Zhou, J. Mater. Chem. C 8, 3784–3794 (2020). https://doi.org/10.1039/c9tc06711f

    Article  CAS  Google Scholar 

  23. R.D. Shannon, C.T. Prewitt, Acta. Crystallorg. B 25, 925–946 (1969). https://doi.org/10.1107/S0567740869003220

    Article  CAS  Google Scholar 

  24. J. Ye, G. Wang, X. Chen, X. Dong, J. Materiomics. 7, 339–346 (2021). https://doi.org/10.1016/j.jmat.2020.08.007

    Article  Google Scholar 

  25. Z. Liu, J. Lu, Y. Mao, P. Ren, H. Fan, J. Eur. Ceram. Soc. 38, 4939–4945 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.07.029

    Article  CAS  Google Scholar 

  26. T. Pan, J. Zhang, Z.N. Guan, Y. Yan, J. Ma, X. Li, S. Guo, J. Wang, Y. Wang, Adv. Electron. Mater. 8, 2200793 (2022). https://doi.org/10.1002/aelm.202200793

    Article  CAS  Google Scholar 

  27. L. Zhao, Q. Liu, J. Gao, S. Zhang, J.F. Li, Adv. Mater. 29, 1701824 (2017). https://doi.org/10.1002/adma.201701824

    Article  CAS  Google Scholar 

  28. C. Liu, H. Yang, R. Hu, Y. Lin, J. Mater. Sci. Mater. Electron. 34, 668 (2023). https://doi.org/10.1007/s10854-023-10009-5

    Article  CAS  Google Scholar 

  29. Y. Pan, X. Wang, Q. Dong, J. Wang, H. Chen, X. Dong, L. Deng, H. Zhang, X. Chen, H. Zhou, Ceram. Int. 48, 26466–26475 (2022). https://doi.org/10.1016/j.ceramint.2022.05.341

    Article  CAS  Google Scholar 

  30. R.D. Shannon, Acta. Crystallorg. A 32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  31. X. Dong, X. Li, X. Chen, H. Chen, C. Sun, J. Shi, F. Pang, H. Zhou, J. Materiomics. 7, 629–639 (2021). https://doi.org/10.1016/j.jmat.2020.11.016

    Article  Google Scholar 

  32. B. Toby et al., J. Appl. Crystallogr. 34, 210–213 (2001). https://doi.org/10.1107/S0021889801002242

    Article  CAS  Google Scholar 

  33. M. Zhou, R. Liang, Z. Zhou, X. Dong, J. Mater. Chem. A 6, 17896–17904 (2018). https://doi.org/10.1039/C8TA07303A

    Article  CAS  Google Scholar 

  34. A. Xie, J. Fu, R. Zuo, C. Zhou, Z. Qiao, T. Li, S. Zhang, Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2021.132534

    Article  Google Scholar 

  35. X. Zhao, Z. Zhou, R. Liang, F. Liu, X. Dong, Ceram. Int. 12, 9060–9066 (2017). https://doi.org/10.1016/j.ceramint.2017.04.051

    Article  CAS  Google Scholar 

  36. J. Ma, D. Zhang, F. Ying, X. Li, L. Li, S. Guo, Y. Huan, J. Zhang, J. Wang, S.T. Zhang, ACS Appl. Mater. Interfaces. 14, 19704–19713 (2022). https://doi.org/10.1021/acsami.2c02086

    Article  CAS  Google Scholar 

  37. Q. Hu, Y. Tian, Q. Zhu, J. Bian, L. Jin, H. Du, D.O. Alikin, V.Y. Shur, Y. Feng, Z. Xu, X. Wei, Nano Energy (2020). https://doi.org/10.1016/j.nanoen.2019.104264

    Article  Google Scholar 

  38. P. Zhao, H. Wang, L. Wu, L. Chen, Z. Cai, L. Li, X. Wang, Adv. Energy Mater. (2019). https://doi.org/10.1002/aenm.201803048

    Article  Google Scholar 

  39. J. Fu, R. Zuo, Acta Mater. 61, 3687–3694 (2013). https://doi.org/10.1016/j.actamat.2013.02.055

    Article  CAS  Google Scholar 

  40. I.P. Raevski, L.A. Reznitchenko, M.A. Malitskaya, L.A. Shilkina, S.O. Lisitsina, S.I. Raevskaya, E.M. Kuznetsova, Ferroelectrics. 299, 95–101 (2004). https://doi.org/10.1080/00150190490429231

    Article  CAS  Google Scholar 

  41. L.E. Cross, Relaxor ferroelectrics. Ferroelectrics. 76, 241–267 (1987). https://doi.org/10.1080/00150198708016970

    Article  CAS  Google Scholar 

  42. K. Uchino, S. Nomura, Ferroelectrics. 44, 55–61 (1982). https://doi.org/10.1080/00150198208260644

    Article  CAS  Google Scholar 

  43. X. Dong, X. Li, H. Chen, Q. Dong, J. Wang, X. Wang, Y. Pan, X. Chen, H. Zhou, J. Adv. Ceram. 11, 729–741 (2022). https://doi.org/10.1007/s40145-022-0566-6

    Article  CAS  Google Scholar 

  44. Q. Dong, X. Wang, J. Wang, Y. Pan, X. Dong, H. Chen, X. Chen, H. Zhou, Ceram. Int. 48, 776–783 (2022). https://doi.org/10.1016/j.ceramint.2021.09.158

    Article  CAS  Google Scholar 

  45. H. Shimizu, H. Guo, S.E. Reyes-Lillo, Y. Mizuno, K.M. Rabe, C.A. Randall, Dalton. Trans. 44, 10763–10772 (2015). https://doi.org/10.1039/C4DT03919J

    Article  CAS  Google Scholar 

  46. Q. Li, M.Y. Li, C. Wang, M. Zhang, H. Fan, Ceram. Int. 45, 19822–19828 (2019). https://doi.org/10.1016/j.ceramint.2019.06.237

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51972114, 52272062).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Yuqing Chen and Xinrong Zhong. The first draft of the manuscript was written by Yuqing Chen and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Anze Shui or Chao He.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The authors formally declare that the present paper is complied with ethical standards.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhong, X., Shui, A. et al. Effect of Bi0.2Sr0.7SnO3 doping on NaNbO3-based ceramics: enhanced ferroelectric, dielectric, and energy storage performance. J Mater Sci: Mater Electron 34, 1301 (2023). https://doi.org/10.1007/s10854-023-10593-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10593-6

Navigation