Skip to main content
Log in

Thermoelectric properties of cobalt-doped nanostructured CdO synthesized via chemical precipitation method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this article, the effect of Cobalt dopant on the thermoelectric properties of nanostructured Cadmium Oxide has been reported at high temperatures. The pristine and 2, 4, 6, and 8% Cobalt-doped nanostructured Cadmium Oxide were synthesized simply by the Precipitation method. The Rietveld refinement of XRD data revealed that all the synthesized samples are highly crystalline and have Face Centered Cubic phase of space group Fm\(\stackrel{-}{3}\)m. The decrease in lattice parameters in Co-doped CdO verified the successful substitution of Cd2+ ions by the Co2+ ions in the CdO matrix. FESEM micrographs revealed that the as-prepared samples have a circular disk-shaped morphology. The elemental analysis was done by EDX spectroscopy which confirmed the existence of Cd, O, and Co in the respective samples. Fourier Transform Infra-Red spectroscopy was used to study the various chemical bonds in the synthesized samples. The charge carrier concentration and Hall mobility were rising simultaneously with the increase in Cobalt concentration at room temperature. The Seebeck coefficient and electrical resistivity were recorded in a temperature range of 300–950 K. The electrical resistivity was found to be decreasing with an increase in Cobalt concentration. The negative values of the Seebeck coefficient of all the samples confirmed their n-type behavior. The thermoelectric power factor calculated from electrical resistivity and Seebeck coefficient data was found to be the highest of about \({2.64\times 10}^{-3}W{m}^{-1}{K}^{-2}\) for 6% Co-doped CdO at 950 K which is more than that for pristine CdO. Hence, Cobalt doped nanostructured Cadmium Oxide is a potential high-temperature thermoelectric material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. J.R. Szczech, J.M. Higggins, S. Jin, J. Mater. Chem. 21, 4037–4055 (2011)

    Article  CAS  Google Scholar 

  2. G.J. Synder, E.S. Toberer, Nat. Mater 7, 105–114 (2008)

    Article  Google Scholar 

  3. X.F. Zheng, C.X. Liu, Y.Y. Yan, Q. Wang, Renew. Sus. Ener. Rev. 32, 486–503 (2014)

    Article  CAS  Google Scholar 

  4. J.F. Li, W.S. Liu, D. Li, M. Zhao, Zhou, NPG Asia. Mater 2(4), 152–158 (2010)

    Article  Google Scholar 

  5. E.O. D.Enescu, R. Virjoghe, & Sus. Ener. Rev 38, 903–916 (2014)

    Article  Google Scholar 

  6. M. Hagencamp, T. Blanke, B. Doring, Int. J. Enr & Env Eng. 13, 241–254 (2022)

    Article  Google Scholar 

  7. I. Terasaki Mater, Enr. Con. Dev. (2005). https://doi.org/10.1533/9781845690915.3.339

  8. L. Han, N.V. Nong, W. Zhang, L.T. Hung, T. Holgate, K. Tashiro, M. Ohtaki, N. Pryds, S. Linderoth, RSC Adv. 4, 12353–12361 (2014)

    Article  CAS  Google Scholar 

  9. R.V.R. Virtudazo, B. Srinivasan, Q. Guo, R. Wu, T. Takei, Y. Shimasaki, H. Wada, K. Kuroda, S. Bernik, T. Mori, Inorg. Chem. Front. 7, 4118–4132 (2020)

    Article  CAS  Google Scholar 

  10. T.M.V. Muruguthiruvalluvan, A.S.A. Nedunchezhian, V. Natarazan, R. Chandramohan, M. Azhagurajan, P. Anandan, M. Arivanandhan, Sol. St. Sci 91, 133–137 (2019)

    Article  CAS  Google Scholar 

  11. C.J. Vineis, A. Shakouri, A. Majumdar, M.G. Kanatzidis, Adv. Mater. 22, 3970–3980 (2010)

    Article  CAS  Google Scholar 

  12. W. Liu, J. Hu, S. Zhang, M. Deng, C.G. Han, Y. Liu, Mater. Tod Phy 1, 50–60 (2017)

    Article  Google Scholar 

  13. J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, Angew Chem. Int. Ed. 48, 8616–8639 (2009)

    Article  CAS  Google Scholar 

  14. T. Mori, small 13, 1702013 (2017)

    Article  Google Scholar 

  15. J. Mao, Z. Liu, J. Zhou, H. Zhu, Q. Zhang, G. Chen, Z. Ren, Adv. Phy 67(2), 69–147 (2018)

    Article  Google Scholar 

  16. C. Yu, X. Zhang, M. Leng, A. Shaga, D. Liu, F. Chen, C. Wang, J. All & Comp. 570, 86–93 (2013)

    Article  CAS  Google Scholar 

  17. P. Anandan, M. Omprakash, M. Azhagurajan, M. Arivanandhan, D.R. Babu, T. Koyama, Y. Hayakawa, CrystEngComm 16, 7956–7962 (2014)

    Article  CAS  Google Scholar 

  18. K. Koumoto, Y. Wang, R. Zhang, A. Kosuga, A. Funahashi, Annu. Rev. Mater. Res. 40, 363–394 (2010)

    Article  CAS  Google Scholar 

  19. P. Jood, R.J. Mehta, Y. Zhang, T.B. Tasciuc, S.X. Dou, D.J. Singh, G. Ramanath, RSC Adv. 4, 6363–6368 (2014)

    Article  CAS  Google Scholar 

  20. N.Y. Devi, K. Vijayakumar, P. Rajasekaran, A.S.A. Nedunchezhian, D. Sidharth, S. Masaru, M. Arivanandhan, R. Jayavel, Cerm. Int. 47(3), 3201–3208 (2021). https://doi.org/10.1016/j.ceramint.2020.09.158

    Article  CAS  Google Scholar 

  21. J. Jacob, U. Rehman, K. Mehmood, A. Ali, K. Mehboob, A. Ashfaq, S. Ikram, N. Amin, S. Hussain, F. Ashraf, Cerm Int. 46, 15013–15017 (2020)

    Article  CAS  Google Scholar 

  22. K. Shanmugapriya, B. Palanivel, R. Murugan, Cur. Sma. Mater 2, 73–79 (2017)

    Google Scholar 

  23. M. Lee, L. Viciu, L. Li, Y. Wang, M.L. Foo, S. Watauchi, R.A. Pascal, R.J. Cava, N.P. Ong, Nat. Mater 5, 537–540 (2006)

    Article  CAS  Google Scholar 

  24. S.O.A. Torres, D. Thomazini, G.P. Balthazar, M.V. Gelfuso, Mater. Res. (2020). https://doi.org/10.1590/1980-5373-MR-2020-0169

    Article  Google Scholar 

  25. H. Ohta, K. Sugiura, K. Koumoto, Inorg. Chem. 47, 8429–8436 (2008)

    Article  CAS  Google Scholar 

  26. M. Ohtaki, K. Araki, K. Yamamoto, J. Elec Mater. 38(7), 1234–1238 (2009)

    Article  CAS  Google Scholar 

  27. S. Yanagiya, N.V. Nong, M. Sonne, M. Pryds, A.I.P. Conf, AIP Conf. Proc. 1449, 327–330 (2012)

    Article  CAS  Google Scholar 

  28. Y. Liu, W. Xu, D.B. Liu, M. Yu, Y.H. Lin, C.W. Nan, Phys. Chem. Chem. Phys. 17, 11229–11233 (2015)

    Article  CAS  Google Scholar 

  29. R. Madan, D. Mohan, V. Kumari, J. Mater. Sci: Mater. elec 34, 556 (2023)

    CAS  Google Scholar 

  30. D. DurgaVijaykarthik, M. Kirithika, N. Prithivikumaran, N. Jeyakumaran, Int. J. Nano Dimens 5(6), 557–562 (2014)

    Google Scholar 

  31. K. Giribabu, R. Suresh, L. Vijayalakshmi, A. Stephen, V. Narayanan, Adv. Mater. Res. 678, 369–372 (2013)

    Article  CAS  Google Scholar 

  32. A. Mukasia, G.S. Manyali, H. Barasa, J. Sifuna, J. Mater. Sci. Res. & Rev. 2(1), 1–7 (2019)

    Google Scholar 

  33. X. Zhang, H. Li, J. Wang, J. Adv. Cerm 4(3), 226–231 (2015)

    Article  Google Scholar 

  34. L. Gao, S. Wang, R. Liu, X. Zha, N. Sun, S. Wang, J. Wang, G. Fu, RSC 45(30), 12215–12220 (2016)

    CAS  Google Scholar 

  35. S. Wang, Q. Lu, L. Li, G. Fu, F. Liu, S. Dai, W. Yu, J. Wang, Scr. Mater. 69, 533–536 (2013)

    Article  CAS  Google Scholar 

  36. S. Wang, F. Liu, Q. Lu, S. Dai, J. Wang, W. Yu, G. Fu, J. Eur. Cerm Soc. 33, 1763–1768 (2013)

    Article  CAS  Google Scholar 

  37. Y. Li, G. Wang, M. Akbari-Saatlu, M. Procek, H.H. Radamson, Front. Mater. 8, 611078 (2021)

    Article  Google Scholar 

  38. M. Noroozi, G. Jayakumar, K. Zahmatkesh, J. Lu, L. Hultman, M. Mensi, S. Marcinkevicius, B. Hamawandi, M.Y. Tafti, A.B. Ergul, Z. Ikonic, M.S. Toprak, H.H. Radamson, J. Solid State Sci. Technol. 6, Q114 (2017)

    Article  CAS  Google Scholar 

  39. R. Santhi, C. Shanthi, M. Sathya, K. Pushpanathan, J. Chem. & Phar Res. 8(9), 249–259 (2016)

    CAS  Google Scholar 

  40. M. Kavakebi, F.J. Sheini, Trans. Nonferrous Met. Soc. China 28, 2255–2264 (2018)

    Article  CAS  Google Scholar 

  41. V. Eskizeybek, O. Demir, A. Avci, M. Chhowalla, J. Nanopart. Res. 13, 4673–4680 (2011)

    Article  CAS  Google Scholar 

  42. R. Madan, V. Kumar, D. Mohan, Mater. Tod. Proc. 54(3), 664–668 (2022)

    Article  CAS  Google Scholar 

  43. P. Scherrer, Nachr. Ges Wiss Göttingen 26, 98–100 (1918)

    Google Scholar 

  44. J.I. Langford, A.J.C. Wilson, J. Appl. Cryst. 11, 102–113 (1978)

    Article  CAS  Google Scholar 

  45. V. Uvarov, I. Popov, Mater. Charac 85, 111–123 (2013)

    Article  CAS  Google Scholar 

  46. V.D. Mote, Y. Purushotham, B.N. Dole, J. Th. & App Phy 6, 6 (2012)

    Google Scholar 

  47. A.T. Ravichandran, A.R. Xavier, K. Pushpanathan, B.M. Nagabhushana, R. Chandramohan, J. Mater. Sci: Mater. Electron. 27, 693–2700 (2016)

    Google Scholar 

  48. K.H. Jung, K.H. Lee, W.S. Seo, S.M. Choi, App. Phy. Let 100, 253902 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors R. Madan, B. Singh, and Vikas Kumar are thankful to the University’s Central Instrumentation Laboratory for providing the experimental facilities. Prof. D. Mohan is thankful to the Department of Science and Technology, India for providing the Fund for Improvement of S&T Infrastructure (FIST) grant for the establishment of common facilities.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

RM: Material synthesis, characterization measurements, and writing the original manuscript. BS and VK: analysis of electrical measurements and characterization techniques like XRD, FESEM, etc. DM: conceptualization of work, Supervision, and revising the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rahul Madan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Ethical approval

The article does not contain any study involving any humans and animals performed by any author.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madan, R., Singh, B., Kumar, V. et al. Thermoelectric properties of cobalt-doped nanostructured CdO synthesized via chemical precipitation method. J Mater Sci: Mater Electron 34, 1123 (2023). https://doi.org/10.1007/s10854-023-10543-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10543-2

Navigation