Skip to main content
Log in

Synthesis of zinc oxide based nitrogen doped graphene oxide with polyaniline (ZnO/N-GO/PANI) flow electrode for desalination application using flow capacitive deionization

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work reported the synthesis of zinc oxide (ZnO) based nitrogen doped graphene oxide (N-GO) with polyaniline (PANI) composite (ZnO/N-GO/PANI) as a potential flow electrode for flow capacitive deionization (FCDI). The prepared ZnO/N-GO/PANI composite was characterized for its structural property, stability, thermal decomposition and surface area analysis using X-ray diffractometer (XRD), scanning electron microscope (SEM), thermo-gravimetric analyzer (TGA) and Brunauer–Emmett–Teller (BET) respectively. Electrochemical studies were performed for the ZnO/N-GO/PANI composite using an electrochemical workstation with a three-electrode setup. SEM analysis revealed that the ZnO/N-GO/PANI composite architectures are made up of spherical and flake-like particles with an average particle size of ~ 32 nm. XRD results confirmed the crystalline nature of the ZnO/N-GO/PANI composite with sharp and intense peaks. BET analysis revealed that ZnO/N-GO/PANI composite has a greater surface area and pore size of 31.65 m2 g−1 and 66.981 nm respectively than ZnO/N-GO composite of 15.98 m2 g−1 and 42.09 nm. The prepared ZnO/N-GO/PANI composite exhibited a higher specific capacitance of 628.4 F g−1 in 0.1 M KCl electrolyte solution determined using cyclic voltammetry (CV) studies. The proposed ZnO/N-GO/PANI composite was identified to be a favourable electrode for flow capacitive deionization (FCDI) technique. The FCDI results revealed that ZnO/N-GO/PANI flow electrode has a high electrosorption capacity (288 mg g−1) and desalinating efficiency (38.1%) under a 1000 mg L−1 of sodium chloride (NaCl) solution at 1.2 V. Therefore, the proposed ZnO/N-GO/PANI composite was identified to be a promising electrode material for FCDI operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article. Raw data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

GO:

Graphene oxide

N-GO:

Nitrogen doped graphene oxide

ZnO/N-GO:

Zinc oxide based nitrogen doped graphene oxide

ZnO/N-GO/PANI:

Zinc oxide based nitrogen doped graphene oxide with polyaniline

XRD:

X-ray diffraction

SEM:

Scanning electron microscope

FTIR:

Fourier transform infra-red

BET:

Brunauer–Emmett–Teller surface area

TGA:

Thermo-gravimetric analyzer

CV:

Cyclic voltammetry

CDI:

Capacitive deionization

FCDI:

Flow capacitive deionization

NaCl:

Sodium chloride

EDL:

Electrical double-layer

References

  1. Z. Xie, X. Shang, J. Yan, T. Hussain, P. Nie, J. Liu, Electrochem. Acta, (2018) https://doi.org/10.1016/j.electacta.2018.09.104

    Article  Google Scholar 

  2. M. Elimelech and W.A. Phillip, Science. (2011) https://doi.org/10.1126/science.1200488

    Article  Google Scholar 

  3. Y. Zhao, Y. Wang, R. Wang, Y. Wu, S. Xu, J. Wang, Desalination (2013). https://doi.org/10.1016/j.desal.2013.06.009

    Article  Google Scholar 

  4. T.P. Barnett, J.C. Adam, D.P. Lettenmaier, Nature. (2005) https://doi.org/10.1038/nature04141

    Article  Google Scholar 

  5. M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas, A.M. Mayes, Nature. (2008) https://doi.org/10.1038/nature06599

    Article  Google Scholar 

  6. M. Schiffler, Desalination (2004). https://doi.org/10.1016/j.desal.2004.06.001

    Article  Google Scholar 

  7. Y. Oren, Desalination (2008). https://doi.org/10.1016/j.desal.2007.08.005

    Article  Google Scholar 

  8. G. Amy, N. Ghaffour, Z. Li, L. Francis, R.V. Linares, T. Missimer, S. Lattemann, Desalination (2017). https://doi.org/10.1016/j.desal.2016.10.002

    Article  Google Scholar 

  9. A.M. Lopez, M. Williams, M. Paiva, D. Demydov, T.D. Do, J.J. Fairey, Y.J. Lin, J.A. Hestekin, Desalination (2017). https://doi.org/10.1016/j.desal.2017.01.010

    Article  Google Scholar 

  10. C.W. Duan, L.X. Hu, J.L. Ma, J. Mater. Chem. A. (2018) https://doi.org/10.1039/C8TA00533H

    Article  Google Scholar 

  11. D. Li, X. Ning, Y. Li J. Zhang, Environ. Sci. Nano. (2020) https://doi.org/10.1039/D0EN00249F

    Article  Google Scholar 

  12. Z.H. Huang, Z.F. Yang, M. Inagakic, J. Mater. Chem. A. (2017) https://doi.org/10.1039/C6TA06733F

    Article  Google Scholar 

  13. S. Porada, R. Zhao, A. Van Der Wal, V. Presser, P. Biesheuvel, Prog. Mater. Sci. (2013) https://doi.org/10.1016/j.pmatsci.2013.03.005

    Article  Google Scholar 

  14. T. Welgemoed, C. Schutte, Desalination (2005). https://doi.org/10.1016/j.desal.2005.02.054

    Article  Google Scholar 

  15. S.I. Jeon, H.R. Park, J. Yeo, S. Yang, C.H. Cho, M.H. Han, D.K. Kim, Energy Environ. Sci. (2013) https://doi.org/10.1039/C3EE24443A

    Article  Google Scholar 

  16. J.H. Choi, Sep. Purif. Technol. (2010). https://doi.org/10.1016/j.seppur.2009.10.023

    Article  Google Scholar 

  17. Y.J. Kim, J.H. Choi, Water Res. (2012). https://doi.org/10.1016/j.watres.2012.08.031

    Article  Google Scholar 

  18. Z. Peng, D. Zhang, L. Shi, T. Yan, S. Yuan, H. Li, R. Gao, J. Fang, J. Phys. Chem. C. (2011) https://doi.org/10.1021/jp2047618

    Article  Google Scholar 

  19. Z. Peng, D. Zhang, D. Yan, J. Zhang, L. Shi, Appl. Surf. Sci. (2013) https://doi.org/10.1016/j.apsusc.2013.06.107

    Article  Google Scholar 

  20. S. Porada, L. Weinstein, R. Dash, A. Van derWal, M. Bryjak, Y. Gogotsi, P. Biesheuvel, ACS Appl. Mater. Interfaces. (2012) https://doi.org/10.1021/am201683j

    Article  Google Scholar 

  21. D. Zhang, X. Wen, L. Shi, T. Yan, J. Zhang, Nanoscale. (2012) https://doi.org/10.1039/C2NR31154B

    Article  Google Scholar 

  22. H.H. Jung, S.W. Hwang, S.H. Hyun, K.H. Lee, G.T. Kim, Desalination (2007). https://doi.org/10.1016/j.desal.2006.11.023

    Article  Google Scholar 

  23. H. Li, Y. Gao, L. Pan, Y. Zhang, Y. Chen, Z. Sun, Water Res. (2008). https://doi.org/10.1016/j.watres.2008.09.026

    Article  Google Scholar 

  24. D. Zhang, L. Shi, J. Fang, K. Dai, X. Li, Mater. Chem. Phys. (2006). https://doi.org/10.1016/j.matchemphys.2005.08.036

    Article  Google Scholar 

  25. X. Zhao, H. Wei, H. Zhao, Y. Wang, N. Tang, J. Electroanal. Chem. (2020). https://doi.org/10.1016/j.jelechem.2020.114416

    Article  Google Scholar 

  26. D. Zhang, T. Yan, L. Shi, Z. Peng, X. Wen, J. Zhang, J. Mater. Chem. (2012). https://doi.org/10.1039/C2JM31393F

    Article  Google Scholar 

  27. A. El Deen, K. Khalil, N. Barakat, K.H. Yong, J. Mater. Chem. A. (2013) https://doi.org/10.1039/C3TA12450A

    Article  Google Scholar 

  28. A.G. El Deen, N.A. Barakat, K.A. Khalil, H.Y. Kim, New J. Chem. (2014). https://doi.org/10.1039/C3NJ00576C

    Article  Google Scholar 

  29. H.B. Li, F. Zaviska, S. Liang, J. Li, L.J. He, H.Y. Yang, J. Mater. Chem. A. (2014) https://doi.org/10.1039/C3TA14322H

    Article  Google Scholar 

  30. A.G. El-Deen, N.A. Barakat, H.Y. Kim, Desalination (2014). https://doi.org/10.1016/j.desal.2014.03.028

    Article  Google Scholar 

  31. H. Wang, L. Shi, T. Yan, J. Zhang, Q. Zhong, D. Zhang, J. Mater. Chem. A. (2014) https://doi.org/10.1039/C3TA15152B

    Article  Google Scholar 

  32. X. Wen, D. Zhang, T. Yan, J. Zhang, L. Shi, J. Mater. Chem. A. (2013) https://doi.org/10.1039/C3TA12683H

    Article  Google Scholar 

  33. H. Li, L. Zou, L. Pan, Z. Sun, Environ. Sci. Technol. (2010). https://doi.org/10.1021/es101888j

    Article  Google Scholar 

  34. H. Li, T. Lu, L. Pan, Y. Zhang, Z. Sun, J. Mater. Chem. (2009). https://doi.org/10.1039/B907703K

    Article  Google Scholar 

  35. H. Wang, D. Zhang, T. Yan, X. Wen, J. Zhang, L. Shi, Q. Zhong, J. Mater. Chem. A. (2013) https://doi.org/10.1039/C3TA11926B

    Article  Google Scholar 

  36. H. Wang, T. Maiyalagan, X. Wang, ACS Catal. (2021). https://doi.org/10.1021/cs200652y

    Article  Google Scholar 

  37. M. Ramani, B.S. Haran, R.E. White, B.N. Popov, J. Electrochem. Soc. (2001). https://doi.org/10.1149/1.1357172

    Article  Google Scholar 

  38. M.T.Z. Myint, J. Dutta, Desalination (2012). https://doi.org/10.1016/j.desal.2012.08.010

    Article  Google Scholar 

  39. C.N.R. Rao, K. Gopalakrishnan, A. Govindaraj, Nano Today. (2014) https://doi.org/10.1016/j.nantod.2014.04.010

    Article  Google Scholar 

  40. S. Ramesh, D. Vikraman, H.S. Kim, J.H. Kim, J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.06.194

    Article  Google Scholar 

  41. M. Winter, R.J. Brodd, Chem. Rev. (2004). https://doi.org/10.1021/cr020730k

    Article  Google Scholar 

  42. A. Rommerskirchen, Y. Gendel, M. Wessling, Electrochem. Commun. (2015). https://doi.org/10.1016/j.elecom.2015.07.018

    Article  Google Scholar 

  43. H. Tong, W. Bai, S. Yue, Z. Gao, L. Lu, L. Shen, S. Dong, J. He, X. Zhang, J. Mater. Chem. (2016). https://doi.org/10.1039/C6TA02249A

    Article  Google Scholar 

  44. R. Galeazzi, I.J. Gonzalez-Panzo, T. Díaz-Becerril, C. Morales, E. Rosendo, R. Silva, R. Romano-Trujillo, A. Coyopol, F.G. Nieto-Caballero, L. Trevi, Yarce, RSC Adv. (2018). https://doi.org/10.1039/C8RA00065D

    Article  Google Scholar 

  45. M. Acik, C. Mattevi, C. Gong, G. Lee, K. Cho, M. Chhowalla, ACS Nano. (2010) https://doi.org/10.1021/nn101844t

    Article  Google Scholar 

  46. A.K. Mageed, A. Salmiaton, S. Izhar, M.A. Razak, H.M. Yusoff, F.M. Yasin, S. Kamarudin, Int. J. Appl. Chem. 12, 1 (2016)

    Google Scholar 

  47. X. Guiheng, W. Nan, W. Junyi, L. Leilei, Z. Jianan, C. Zhimin, X. Qun, Ind. Eng. Chem. Res. (2012). https://doi.org/10.1021/ie301734f

    Article  Google Scholar 

  48. P. Scherrer, Bestimmung der grosse und der inneren struktur von kolloidteilchen mittels rontgenstrahlen. Nachr. Ges. Wiss. Gottingen 1918, 98–100 (1918)

    Google Scholar 

  49. J.I. Langford, A.J.C. Wilson, J. Appl. Cryst. (1978). https://doi.org/10.1107/S0021889878012844

    Article  Google Scholar 

  50. V. Uvarov, I. Popov, Mater. Charac. (2013). https://doi.org/10.1039/C5CE01799H

    Article  Google Scholar 

  51. L. Guo, Q. Ru, X. Song, S. Hu, Y. Mo, J. Mater. Chem. (2015) https://doi.org/10.1039/C5TA00830A

    Article  Google Scholar 

  52. H. Tong, W. Bai, S. Yue, Z. Gao, L. Lu, L. Shen, S. Dong, J. Zhu, J. He, X. Zhang, J. Mater. Chem. (2016) https://doi.org/10.1039/C6TA02249A

    Article  Google Scholar 

  53. N.A. Kumar, H.J. Choi, Y.R. Shin, D.W. Chang, L. Dai, H.B. Baek, ACS Nano (2012). https://doi.org/10.1021/nn204688c

    Article  Google Scholar 

  54. Y. Mithilesh, R. KyongYop, J.P. Soo, H. David, Compos. B Eng. (2014). https://doi.org/10.1016/j.compositesb.2014.04.034

    Article  Google Scholar 

  55. C. Qiao, Y. Zhang, Y. Zhu, C. Cao, X. Bao, J. Xu, J. Mater. Chem. (2015). https://doi.org/10.1039/C4TA06634K

    Article  Google Scholar 

  56. C. Zhu, D. Wen, S. Leubner, M. Oschatz, W. Liu, M. Holzschuh, F. Simon, S. Kaskel, A. Eychmüller, Chem. Commun. (2015). https://doi.org/10.1039/C5CC01558H

    Article  Google Scholar 

  57. Z.H. Huang, Z. Yang, F. Kang, M. Inagakic, J. Mater. Chem. A (2017) https://doi.org/10.1039/C6TA06733F

    Article  Google Scholar 

  58. J. Sung-il, P. Hong-ran, Y. Jeong-gu, Y. SeungCheol, C. Churl Hee, H. Moon Hee, K. Dong Kook, Int. Energy  Environ. Sci. (2013). https://doi.org/10.1039/C3EE24443A

    Article  Google Scholar 

  59. E. Alonso-Blanco, F.J. Gomez-Moreno, B. Artinano, S. Iglesias-Samitier, V. Juncal- Bello, M. Peneiro-Iglesias, P. Lopez-Mahía, N. Perez, M. Brines, A. Alastuey, M.I. García, S. Rodríguez, M. Sorribas, A. Delaguila, G. Titos, H. Lyamanil, L. Alados-Arboledas, Atmos. Environ. (2018). https://doi.org/10.1016/j.atmosenv.2018.06.046

    Article  Google Scholar 

Download references

Funding

The authors would like to gratefully acknowledge the support of Department of Science and Technology (DST), SEED Division, New-Delhi, India for providing financial support for this work (Grant: DST (SEED); SP/YO/2019/1047). Department of Chemical Engineering, A.C. Tech, Anna University Chennai is also acknowledged for providing facilities to perform characterization studies like SEM, Electrochemical studies etc. and other infrastructure facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Contributions

HHAM carried out the FCDI experimental works and drafted the manuscript. SPT designed, coordinated this research, and revised the manuscript. SR & NM carried out the physical characterisation analysis of the synthesised electrode material, BN conceived the study and participated in research coordination. The authors read and approved the final manuscript.

Corresponding author

Correspondence to Santhoshini Priya Thomas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansoor, H.H.A., Thomas, S.P., Ramanujam, S. et al. Synthesis of zinc oxide based nitrogen doped graphene oxide with polyaniline (ZnO/N-GO/PANI) flow electrode for desalination application using flow capacitive deionization. J Mater Sci: Mater Electron 34, 1081 (2023). https://doi.org/10.1007/s10854-023-10536-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10536-1

Navigation