Skip to main content
Log in

Ion-beam exposure on PAM surface according to molecular concentration for application to liquid-crystal device

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study investigated the modification effects of ion-beam exposure on polyacrylamide films according to molecular concentrations. Surface morphological examination using scanning electron microscopy showed increasing polyacrylamide particle size and film thicknesses with increasing concentrations. X-ray photoelectron spectroscopy and contact angle analysis were used to confirm the surface chemical reconstruction and increased surface energy after ion-beam exposure. As the molecular concentration increased, the changes were also observed to increase. The anisotropic ion-beam exposure induced strong van der Waals interactions with the liquid-crystals, leading to their uniform alignment. The uniform and homogeneous liquid-crystal alignment state was confirmed by polarized optical microscopy and pretilt angle analysis. Electro-optical performance evaluations showed the high potential of the ion-beam-exposed polyacrylamide film for use in liquid-crystal devices. Therefore, the correlation between the film molecular concentration and the IB process is successfully verified, and its applicability to liquid-crystal devices is confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Y. Chen, D. Xu, S.-T. Wu, S. Yamamoto, Y. Haseba, Appl. Phys. Lett. 102, 141116 (2013)

    Article  Google Scholar 

  2. Y. Garbovskiy, Appl. Phys. Lett. 108, 121104 (2016)

    Article  Google Scholar 

  3. D.-M. Song, K.-H. Jung, J.-H. Moon, D.-M. Shin, Opt. Mater. 21, 667 (2003)

    Article  CAS  Google Scholar 

  4. N.J. V, E. Shiju, R. Arun, M.K.R. Varma, K. Chandrasekharan, N. Sandhyarani, S. Varghese, Opt. Mater. 67, 7 (2017)

    Article  Google Scholar 

  5. X. Yan, F.W. Mont, D.J. Poxson, M.F. Schubert, J.K. Kim, J. Cho, E.F. Schubert, Jpn J. Appl. Phys. 48, 120203 (2009)

    Article  Google Scholar 

  6. T.-H. Lin, H.-C. Jau, Appl. Phys. Lett. 88, 061122 (2006)

    Article  Google Scholar 

  7. D.W. Lee, Y. Liu, D.H. Kim, J.Y. Oh, H.-C. Jeong, D.-S. Seo, Eur. Polym. J. 163, 110937 (2022)

    Article  CAS  Google Scholar 

  8. M. Schadt, K. Schmitt, V. Kozinkov, V. Chigrinov, Jpn J. Appl. Phys. 31, 2155 (1992)

    Article  CAS  Google Scholar 

  9. W.M. Gibbon, P.J. Shannon, S.-T. Sun, B.J. Swetlin, Nature 351, 49 (1991)

    Article  Google Scholar 

  10. M.F. Toney, T.P. Russell, J.A. Logan, H. Kikuchi, J.M. Sands, S.K. Kumar, Nature 374, 709 (1995)

    Article  CAS  Google Scholar 

  11. T.J. Lee, S.G. Hahm, S.W. Lee, B. Chae, S.J. Lee, G. Kim, S.B. Kim, J.C. Jung, M. Ree, Mater. Sci. Eng. B 132, 64 (2006)

    Article  CAS  Google Scholar 

  12. P.S.H. Henry, Br. J. Appl. Phys. 4, S31 (1953)

    Article  Google Scholar 

  13. J.V. Haaren, Nature 411, 29 (2001)

    Article  Google Scholar 

  14. M. Lu, Jpn J. Appl. Phys. 43, 8156–8160 (2004)

    Article  CAS  Google Scholar 

  15. W.A. Crossland, J.H. Morrissy, B. Needham, J. Phys. D-Appl Phys. 9, 2001–2014 (1976)

    Article  CAS  Google Scholar 

  16. P. Chaudhari, J.A. Lacey, S.-C.A. Lien, J.L. Speidell, Jpn J. Appl. Phys. 37, L55–L56 (1998)

    Article  CAS  Google Scholar 

  17. P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.C.A. Lien, A. Callegary, G. Hougham, N.D. Lang, P.S. Andry, R. John, K.H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, Y. Shiota, Nature 411, 56–59 (2001)

    Article  CAS  Google Scholar 

  18. C. Satriano, E. Conte, G. Marletta, Langmuir 17, 2243–2250 (2001)

    Article  CAS  Google Scholar 

  19. D.W. Lee, D.H. Kim, J.Y. Oh, D.-S. Seo, Plasma Process. Polym. 19, 2100207 (2022)

    Article  CAS  Google Scholar 

  20. K.S. Kim, K.H. Lee, K. Cho, C.E. Park, J. Membr. Sci. 199, 135–145 (2002)

    Article  CAS  Google Scholar 

  21. D.-W. Lee, D.-H. Kim, J.-Y. Oh, D.-S. Seo, J. Vac Sci. Technol. A 40, 023408 (2022)

    Article  CAS  Google Scholar 

  22. W.-M. Kulicke, R. Kniewske, J. Klein, Progr Polym. Sci. 8, 373 (1982)

    Article  CAS  Google Scholar 

  23. G. Huang, J. Yang, J. Gao, X. Wang, Ind. Eng. Chem. Res 51, 12355–12366 (2012)

    Article  CAS  Google Scholar 

  24. X. Jin, G. Sun, G. Zhang, H. Yang, Y. Xiao, J. Gao, Z. Zhang, L. Qu, Nano Res. 12, 1199–1206 (2019)

    Article  CAS  Google Scholar 

  25. K.Y. Han, T. Miyashita, T. Uchida, Mol. Cryst. Liq Cryst. Sci. Technol. Sect. A-Mol Cryst. Liq Cryst. 241, 147 (1994)

    Article  CAS  Google Scholar 

  26. T.J. Scheffer, J. Nehring, J. Appl. Phys. 48, 1783 (1977)

    Article  Google Scholar 

  27. J. Stöhr, M.G. Samant, J. Lüning, A.C. Callegari, P. Chaudhari, J.P. Doyle, J.A. Lacey, S.A. Lien, S. Purushothaman, J.L. Speidell, Science 292, 2299–2302 (2001)

    Article  Google Scholar 

  28. O. Yaroshchuk, R. Kravchuk, A. Dobrovolskyy, L. Qiu, O.D. Lavrentovich, Liq Cryst. 31, 859–869 (2004)

    Article  CAS  Google Scholar 

  29. A.W. Adamson, Physical Chemistry of Surfaces, fifth edn. (Wiley-Interscience, New York, 1990)

    Google Scholar 

  30. W.-K. Lee, Y.S. Choi, Y.-G. Kang, J. Sung, D.-S. Seo, C. Park, Adv. Funct. Mater. 21, 3843–3850 (2011)

    Article  CAS  Google Scholar 

  31. H.-C. Jeong, J.H. Lee, J. Won, B.Y. Oh, D.H. Kim, D.W. Lee, I.H. Song, Y. Liu, D.-S. Seo, Opt. Express 27, 18096 (2019)

    Article  Google Scholar 

  32. N.J. V, S.P. Rajeev, S. Varghese, Liquid Cryst. 46, 736 (2019)

    Article  Google Scholar 

Download references

Funding

This research was supported by the National Research Foundation of Korea (Grant No. 2022R1F1A106419212).

Author information

Authors and Affiliations

Authors

Contributions

DWL contributed to writing-original draft. DHK contributed to methodology. JYO contributed to measurement, JW contributed to material preparation. DBY contributed to investigation. HCJ contributed to formal analysis. DSS contributed to administration.

Corresponding authors

Correspondence to Hae-Chang Jeong or Dae-Shik Seo.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D.W., Kim, D.H., Oh, J.Y. et al. Ion-beam exposure on PAM surface according to molecular concentration for application to liquid-crystal device. J Mater Sci: Mater Electron 34, 1102 (2023). https://doi.org/10.1007/s10854-023-10523-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10523-6

Navigation