Skip to main content
Log in

Self-powered photodetector based on copper-doped methyl ammonium lead bromide

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Emerging applications in internet of things are ushering research into novel device architectures for self-powered electronics. Pure and copper-doped CH3NH3PbBr3 was synthesized using emulsion–DEemulsion process and subsequently using spin coating method, thin films were grown. Structural and optical characterization of the films were carried out before and after subjecting them to vacuum annealing. The copper-doped CH3NH3PbBr3 thin films subjected to vacuum annealing at 400 K showed highest preferential orientation along the (113) growth plane. The characteristic green luminescence of the CH3NH3PbBr3 system did not undergo any significant change in its photoluminescence emission energy indicating that copper doping or vacuum annealing of the copper-doped thin films does not alter the photoluminescence pathway. The time-resolved photoluminescence measurements of the samples showed that the electron–hole pair recombination lifetime varied from 10–6 s for the pure material to 10–10 s for the copper-doped vacuum-annealed material. We have engineered and characterized self-powered photodetectors using the copper-doped methyl ammonium lead bromide perovskite material which exhibits giant photosensitivity of 444%. Vacuum-annealed CH3NH3Pb1−xCuxBr3-based photodetectors yield improved photocurrent and spectral response both in the UV and in the visible region delivering an effective increase in responsivity bandwidth relative to their pristine counterparts. The CH3NH3Pb1−xCuxBr3-based photodetectors exhibit a self-powered ON/OFF photocurrent ratio of ~ 35, a detectivity of ~ 21 × 105 Jones and responsivity of 8.244 × 10–6 A/W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available upon reasonable request to the corresponding author.

References

  1. R. Saraf, V. Maheshwari, ACS Appl Mater Interfaces 10, 21066 (2018)

    Article  CAS  Google Scholar 

  2. A. Mathur, H. Fan, V. Maheshwari, Mater Adv 2, 5274 (2021)

    Article  CAS  Google Scholar 

  3. H. Mehdi, M. Matheron, A. Mhamdi, S. Cros, A. Bouazizi, J. Mater. Sci.: Mater. Electron. 32, 21579 (2021)

    CAS  Google Scholar 

  4. A.L.M. Freitas, A. Tofanello, A. Bonadio, J.A. Souza, J. Mater. Sci.: Mater. Electron. 33, 18327 (2022)

    CAS  Google Scholar 

  5. I.R. Benmessaoud, A.L. Mahul-Mellier, E. Horváth, B. Maco, M. Spina, H.A. Lashuel, L. Forró, Toxicol Res (Camb) 5, 407 (2016)

    Article  CAS  Google Scholar 

  6. H. Yu, F. Wang, F. Xie, W. Li, J. Chen, N. Zhao, Adv Funct Mater 24, 7102 (2014)

    CAS  Google Scholar 

  7. S. Chaudhary, S.K. Gupta, C.M. Singh Negi, Mater Sci Semicond Process 109, 104916 (2020)

    Article  CAS  Google Scholar 

  8. A. Mhamdi, H. Mehdi, A. Bouazizi, J. Mater. Sci. Mater. Electron. 32, 2302 (2021)

    Article  CAS  Google Scholar 

  9. R. Sheng, A. Ho-Baillie, S. Huang, S. Chen, X. Wen, X. Hao, M.A. Green, J. Phys. Chem. C 119, 3545 (2015)

    Article  CAS  Google Scholar 

  10. J. Chaudhary, S.K. Gupta, A.S. Verma, C.M.S. Negi, J Mater Sci 55, 4345 (2020)

    Article  CAS  Google Scholar 

  11. P. Tyagi, S.M. Arveson, W.A. Tisdale, J. Phys. Chem. Lett. 6, 1911 (2015)

    Article  CAS  Google Scholar 

  12. S.S. Mali, C.S. Shim, C.K. Hong, NPG Asia Mater (2015). https://doi.org/10.1038/am.2015.86

    Article  Google Scholar 

  13. H. Huang, F. Zhao, L. Liu, F. Zhang, X.G. Wu, L. Shi, B. Zou, Q. Pei, H. Zhong, ACS Appl Mater Interfaces 7, 28128 (2015)

    Article  CAS  Google Scholar 

  14. F. Zhang, H. Zhong, C. Chen, X.G. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong, Brightly-luminescent and color-tunable colloidal CH3NH3PbX3 (X=Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano 9, 4533 (2015)

    Article  CAS  Google Scholar 

  15. A. Suzuki, M. Taguchi, T. Oku, M. Okita, S. Minami, S. Fukunishi, T. Tachikawa, J. Mater. Sci. Mater. Electron. 32, 26449 (2021)

    Article  CAS  Google Scholar 

  16. R. Adithya Nath, A. Raj, J.A. Salam, R. Jayakrishnan, Mater Today Proc 62, 454 (2022)

    Article  CAS  Google Scholar 

  17. A.R. Nath, A. Raj, J.A. Salam, A.M. Anand, R. Jayakrishnan, Opt Mater (Amst) (2023). https://doi.org/10.1016/j.optmat.2022.113373

    Article  Google Scholar 

  18. A. Elattar, J. Kangsabanik, K. Nakao, K. Tsutsumi, H. Suzuki, T. Nishikawa, K.S. Thygesen, Y. Hayashi, Mater Chem Front 2022, 10 (2022)

    Google Scholar 

  19. M.K. Hossain, M.F. Pervez, M.N.H. Mia, A.A. Mortuza, M.S. Rahaman, M.R. Karim, J.M.M. Islam, F. Ahmed, M.A. Khan, Results Phys 7, 1516 (2017)

    Article  Google Scholar 

  20. E.B. Kim, M.S. Akhtar, H.S. Shin, S. Ameen, M.K. Nazeeruddin, J Photochem Photobiol C Photochem Rev (2021). https://doi.org/10.1016/j.jphotochemrev.2021.100405

    Article  Google Scholar 

  21. H. Park, Y.H. Hwang, B.S. Bae, J Solgel Sci Technol 65, 23 (2013)

    Article  CAS  Google Scholar 

  22. Y.A. Kumar Reddy, I.K. Kang, Y.B. Shin, H.C. Lee, J Phys D Appl Phys (2015). https://doi.org/10.1088/0022-3727/48/35/355104

    Article  Google Scholar 

  23. S. Chander, M.S. Dhaka, J. Mater. Sci. Mater. Electron. 27, 11961 (2016)

    Article  CAS  Google Scholar 

  24. P. Jain, P. Arun, Thin Solid Films 548, 241 (2013)

    Article  CAS  Google Scholar 

  25. D. Alagarasan, S.S. Hegde, S. Varadharajaperumal, K.D. Arun Kumar, R. Naik, S.P. Panjalingam, E.E.S. Massoud, R. Ganesan, J Mater Sci Mater Electron 33, 4794 (2022)

    Article  CAS  Google Scholar 

  26. A. Purohit, S. Chander, S.P. Nehra, M.S. Dhaka, Phys E Low Dimens Syst Nanostruct 69, 342 (2015)

    Article  CAS  Google Scholar 

  27. E. Bacaksiz, S. Aksu, I. Polat, S. Yilmaz, M. Altunbaş, J Alloys Compd 487, 280 (2009)

    Article  CAS  Google Scholar 

  28. S. Thirumalairajan, S.M. Mohan, K. Girija, S.M. Mohan, J. Chandrasekaran, Structural, morphological and optical studies of CdSe thin films from ammonia bath. Chalcogenide Lett 6, 351 (2009)

    Google Scholar 

  29. J. Koaib, N. Bouguila, M. Kraini, A. Mhamdi, I. Halidou, M. Ben Salem, H. Bouzouita, S. Alaya, J Mater Sci Mater Electron 27, 9216 (2016)

    Article  CAS  Google Scholar 

  30. V.P.G. Vani, M.V. Reddy, K.T.R. Reddy, ISRN Condensed Matter Phys 2013, 1 (2013)

    Article  Google Scholar 

  31. G.L. Agawane, S.W. Shin, S.A. Vanalakar, M.P. Suryawanshi, A.V. Moholkar, J.H. Yun, J. Gwak, J.H. Kim, J Mater Sci Mater Electron 26, 1900 (2015)

    Article  CAS  Google Scholar 

  32. A. Kavitha, R. Kannan, P. Sreedhara Reddy, S. Rajashabala, J Mater Sci Mater Electron 27, 10427 (2016)

    Article  CAS  Google Scholar 

  33. Y.A.K. Reddy, B. Ajitha, M. Reddeppa, A. Sreedhar, J. Mater. Sci.: Mater. Electron. 30, 20687 (2019)

    CAS  Google Scholar 

  34. K. Nakada, Y. Matsumoto, Y. Shimoi, K. Yamada, Y. Furukawa, Molecules 24, 626 (2019)

    Article  Google Scholar 

  35. R. Jayakrishnan, A. Raj, S.J. Varma, Appl Nanosci 11, 2095 (2021)

    Article  CAS  Google Scholar 

  36. J. Xing, C. Zhao, Y. Zou, W. Kong, Z. Yu, Y. Shan, Q. Dong, D. Zhou, W. Yu, C. Guo, Light Sci Appl (2020). https://doi.org/10.1038/s41377-020-00349-w

    Article  Google Scholar 

  37. L.Q. Xie, T.Y. Zhang, L. Chen, N. Guo, Y. Wang, G.K. Liu, J.R. Wang, J.Z. Zhou, J.W. Yan, Y.X. Zhao, B.W. Mao, Z.Q. Tian, Phys. Chem. Chem. Phys. 18, 18112 (2016)

    Article  CAS  Google Scholar 

  38. R. Jayakrishnan, R. Chandran, A.R. Raj, S.J. Varma, J Nanoparticle Res (2021). https://doi.org/10.1007/s11051-021-05324-z

    Article  Google Scholar 

  39. H. Lu, H. Zhang, S. Yuan, J. Wang, Y. Zhan, L. Zheng, Phys. Chem. Chem. Phys. 19, 4516 (2017)

    Article  CAS  Google Scholar 

  40. E.T. Vickers, T.A. Graham, A.H. Chowdhury, B. Bahrami, B.W. Dreskin, S. Lindley, S.B. Naghadeh, Q. Qiao, J.Z. Zhang, ACS Energy Lett 3, 2931 (2018)

    Article  CAS  Google Scholar 

  41. J.S. Yeo, R. Kang, S. Lee, Y.J. Jeon, N.S. Myoung, C.L. Lee, D.Y. Kim, J.M. Yun, Y.H. Seo, S.S. Kim, S.I. Na, Nano Energy 12, 96 (2015)

    Article  CAS  Google Scholar 

  42. B. Deka Boruah, Nanoscale Adv 1, 2059 (2019)

    Article  CAS  Google Scholar 

  43. Y. Fang, Q. Dong, Y. Shao, Y. Yuan, J. Huang, Nat Photonics 9, 679 (2015)

    Article  CAS  Google Scholar 

  44. X. Li, C. Gao, H. Duan, B. Lu, X. Pan, E. Xie, Nano Energy 1, 640 (2012)

    Article  Google Scholar 

  45. R. Jayakrishnan, A.S. Kurian, V.G. Nair, M.R. Joseph, Mater Chem. Phys. 180, 149–155 (2016)

    Article  CAS  Google Scholar 

  46. R. Jayakrishnan, T. Sebastian, K.P. Vijayakumar, C. Sudha Kartha, J. Appl. Phys. 111, 093714 (2012)

    Article  Google Scholar 

  47. S. Gavranovic, J. Pospisil, O. Zmeskal, V. Novak, P. Vanysek, K. Castkova, J. Cihlar, M. Weiter, ACS Appl Mater Interfaces 14, 20159 (2022)

    Article  CAS  Google Scholar 

  48. K.M. Boopathi, B. Martín-García, A. Ray, J.M. Pina, S. Marras, M.I. Saidaminov, F. Bonaccorso, F. Di Stasio, E.H. Sargent, L. Manna, A.L. Abdelhady, ACS Energy Lett 5, 642 (2021)

    Article  Google Scholar 

  49. D. Kumar, J. Chaudhary, S. Kumar, S.R. Bhardwaj, M. Yusuf, A.S. Verma, East Euro J Phys 3, 70–73 (2021)

    Google Scholar 

  50. F. Furlan, D. Nodari, E. Palladino, E. Angela, L. Mohan, J. Briscoe, M.J. Fuchter, T.J. Macdonald, G. Grancini, M.A. McLachlan, N. Gasparini, Adv Opt Mater (2022). https://doi.org/10.1002/adom.202201816

    Article  Google Scholar 

  51. Y. Liu, W. Gong, F. Xiang, Y. Li, H. Guo, F. Hao, X. Niu, Adv Opt Mater (2023). https://doi.org/10.1002/adom.202202215

    Article  Google Scholar 

  52. H. Deng, D. Dong, K. Qiao, L. Bu, B. Li, D. Yang, H.E. Wang, Y. Cheng, Z. Zhao, J. Tang, H. Song, Nanoscale 7, 4163 (2015)

    Article  CAS  Google Scholar 

  53. F. Ye, H. Wu, M. Qin, S. Yang, G. Niu, X. Lu, J. Wang, D.B. Mitzi, W.C.H. Choy, ACS Appl Mater Interfaces 12, 24498 (2020)

    Article  CAS  Google Scholar 

  54. X. Xu, X. Zhang, W. Deng, L. Huang, W. Wang, J. Jie, X. Zhang, ACS Appl Mater Interfaces 10, 10287 (2018)

    Article  CAS  Google Scholar 

  55. H. Deng, X. Yang, D. Dong, B. Li, D. Yang, S. Yuan, K. Qiao, Y.B. Cheng, J. Tang, H. Song, Nano Lett 15, 7963 (2015)

    Article  CAS  Google Scholar 

Download references

Funding

Kerala State Young Scientist Award project KSCSTE/433/2018-KSYSA-RG. University of Kerala funded research project No. 1599/2021/UOK and 3092/2021/UOK.

Author information

Authors and Affiliations

Authors

Contributions

RAN contributed to experiment, data collection, analysis and writing. AR contributed to formal analysis and software. JAS contributed to formal analysis and software. AMA contributed to formal analysis. RJ contributed to conceptualization, funding, formal analysis, writing, editing and supervision.

Corresponding author

Correspondence to R. Jayakrishnan.

Ethics declarations

Competing interest

The authors declare that there are no competing interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, R.A., Raj, A., Salam, J.A. et al. Self-powered photodetector based on copper-doped methyl ammonium lead bromide. J Mater Sci: Mater Electron 34, 1086 (2023). https://doi.org/10.1007/s10854-023-10516-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10516-5

Navigation