Skip to main content
Log in

Impact of thin layer of copper on cadmium telluride and cadmium sulfide thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present paper focuses on the study of influence of copper incorporation in the cadmium telluride (CdTe) films. CdTe absorber layers have been grown by thermal evaporation technique and cadmium sulfide (CdS) buffer layers have been deposited by Chemical bath deposition method. Copper incorporated CdTe films have been characterized by X-ray diffraction (XRD), Atomic force microscopy (AFM), scanning electron microscopy (SEM), UV–Vis spectroscopy, Raman spectroscopy and Hall Effect measurements. XRD analysis illustrated that all the CdTe thin films were of polycrystalline nature possessing cubic structure showing sharp peak at (111) orientation, while the intensities of peaks varied from sample to sample with respect to copper incorporation in the CdTe films. SEM analysis demonstrated that maximum grain size and morphology were dependent on the incorporation of copper on buffer layer. From the AFM results, it was observed that the surface roughness of CdTe thin films varied with respect to different copper incorporation in the thin films. From the Raman spectra analysis, it was observed that the intensities of A1, E1 modes of Te and TO modes of CdTe thin films varied with copper incorporated sample displaying maximum intensities of the shoulder peaks followed by other samples. From the optical properties of CdTe thin films it was demonstrated that bandgap of samples slightly decreased with higher copper amount. From the electrical properties of CdTe thin films it was observed that higher mobility and reduced resistivity were observed for copper incorporated samples. Thus, all these characterization results suggest that with controlled amount of copper incorporation these CdTe thin films possess the potential to be used as absorber layer for solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data presented in the manuscript can be provided on reasonable request.

References

  1. T. Manimozhi, T. Logu, J. Archana, M. Navaneethan, K. Sethuraman, K. Ramamurthi, Enhanced photo-response of CdTe Thin film via Mo doping prepared using electron beam evaporation technique. J Mater Sci Mater Electron 31(23), 21059–21072 (2020). https://doi.org/10.1007/s10854-020-04618-7

    Article  CAS  Google Scholar 

  2. R.S. Kapadnis, S.B. Bansode, A.T. Supekar, P.K. Bhujbal, S.S. Kale, S.R. Jadkar, H.M. Pathan, Cadmium telluride/cadmium sulfide thin films solar cells: a review. ES Energy Environ (2020). https://doi.org/10.30919/esee8c706

    Article  Google Scholar 

  3. J.M. Kestner, S. McElvain, S. Kelly, T.R. Ohno, L.M. Woods, C.A. Wolden, An experimental and modeling analysis of vapor transport deposition of cadmium telluride. Sol Energy Mater Sol Cells. 83(1), 55–65 (2004). https://doi.org/10.1016/j.solmat.2004.02.013

    Article  CAS  Google Scholar 

  4. X. Wen, Z. Lu, X. Sun, Y. Xiang, Z. Chen, J. Shi, I. Bhat, G.C. Wang, M. Washington, T.M. Lu, Epitaxial CdTe thin films on mica by vapor transport deposition for flexible solar cells. ACS Appl Energy Mater 3(5), 4589–4599 (2020). https://doi.org/10.1021/acsaem.0c00265

    Article  CAS  Google Scholar 

  5. M.N. Harif, K.S. Rahman, C. Doroody, H.N. Rosly, M. Isah, M.A. Alghoul, H. Misran, N. Amin, Microstructural evolution of oxygen incorporated CdTe thin films deposited by close-spaced sublimation. Mater Lett (2022). https://doi.org/10.1016/j.matlet.2021.130552

    Article  Google Scholar 

  6. N. Amin, M.R. Karim, Z.A. Alothman, An in-depth analysis of CdTe thin-film deposition on ultra-thin glass substrates via close-spaced sublimation(CSS). Coatings (2022). https://doi.org/10.3390/coatings12050589

    Article  Google Scholar 

  7. H. Trivedi, A. Boochani, N. Shagya, J. Lahiri, Z. Ghorannevis, A.S. Parmar, Investigating optical, structural and morphological properties of polycrystalline CdTe thin-film deposited by RF magnetron sputtering. Mater Lett 11, 100087 (2021). https://doi.org/10.1016/j.mlblux.2021.100087

    Article  CAS  Google Scholar 

  8. E. Camacho-Espinosa, A. López-Sánchez, I. Rimmaudo, R. Mis-Fernández, J.L. Peña, All-sputtered CdTe solar cell activated with a novel method. Sol. Energy 193, 31–36 (2019). https://doi.org/10.1016/j.solener.2019.09.023

    Article  CAS  Google Scholar 

  9. G.K.U.P. Gajanayake, D.S.M. De Silva, H.Y.R. Atapattu, Altering NH4OH concentration in producing chemical bath deposited CdS to steadily support electrodeposited CdTe. Mater Sci Eng Solid-State Mater Adv Technol (2021). https://doi.org/10.1016/j.mseb.2020.114952

    Article  Google Scholar 

  10. H. Soonmin, C.U. Vyas, P. Pataniya, K.D. Patel, S. Mahato, A short review of CdTe and CdSe films: growth and characterization. Mediterr J Chem 7(2), 115–124 (2018). https://doi.org/10.13171/mjc72/01808011619-soonmin

    Article  Google Scholar 

  11. M.F. Al-Kuhaili, M.B. Mekki, S.A. Abdalla, Influence of vacuum annealing on the photoresponse of thermally evaporated cadmium telluride thin films. Thin Solid Films (2019). https://doi.org/10.1016/j.tsf.2019.137412

    Article  Google Scholar 

  12. K.S. Rahman, Cadmium telluride (CdTe) thin film solar cells, in Comprehensive guide on organic and inorganic solar cells. ed. by R. Din (Academic Press, 2022), pp.65–83

    Chapter  Google Scholar 

  13. B. Alshahrani, S. Nabil, H.I. Elsaeedy, H.A. Yakout, A. Qasem, The pivotal role of thermal annealing of cadmium telluride thin film in optimizing the performance of CdTe/Si solar cells. J. Electron. Mater. 50(8), 4586–4598 (2021). https://doi.org/10.1007/s11664-021-08989-3

    Article  CAS  Google Scholar 

  14. S. Lalitha, S.Z. Karazhanov, P. Ravindran, S. Senthilarasu, R. Sathyamoorthy, J. Janabergenov, Electronic structure, structural and optical properties of thermally evaporated CdTe thin films. Phys B Condensed Matter 387(1–2), 227–238 (2007). https://doi.org/10.1016/j.physb.2006.04.008

    Article  CAS  Google Scholar 

  15. J. Huang, D. Yang, W. Li, J. Zhang, L. Wu, W. Wang, Copassivation of polycrystalline CdTe absorber by CuCl thin films for CdTe solar cells. Appl Surface Sci (2019). https://doi.org/10.1016/j.apsusc.2019.03.253

    Article  Google Scholar 

  16. M.F. Hasaneen, W.S. Mohamed, Effect of CdCl2 heat treatment in (Ar + O2) atmosphere on structural and optical properties of CdTe thin films. Optik 160, 307–321 (2018). https://doi.org/10.1016/j.ijleo.2018.01.112

    Article  CAS  Google Scholar 

  17. A. Abbas, G.D. West, J.W. Bowers, P. Isherwood, P.M. Kaminski, B. Maniscalco, P. Rowley, J.M. Walls, K. Barricklow, W.S. Sampath, K.L. Barth, The effect of cadmium chloride treatment on close-spaced sublimated cadmium telluride thin-film solar cells. IEEE J Photovoltaics 3(4), 1361–1366 (2013). https://doi.org/10.1109/JPHOTOV.2013.2264995

    Article  Google Scholar 

  18. E.D. Jones, N.M. Stewart, J.B. Mullin, The diffusion of copper in cadmium telluride. J. Cryst. Growth 117, 244–248 (1992). https://doi.org/10.1016/0022-0248(92)90753-6

    Article  CAS  Google Scholar 

  19. J. Perrenoud, L. Kranz, C. Gretener, F. Pianezzi, S. Nishiwaki, S. Buecheler, A.N. Tiwari, A comprehensive picture of Cu doping in CdTe solar cells. J Appl Phys 114, 174505 (2013). https://doi.org/10.1063/1.4828484

    Article  CAS  Google Scholar 

  20. K.K. Chin, T.A. Gessert, S.H. Wei, The roles of Cu impurity states in CdTe thin film solar cells, in 35th IEEE photovoltaic specialists conference. (IEEE, Honolulu, 2010), pp.001915–001918

    Google Scholar 

  21. K.D. Dobson, I. Visoly-Fisher, G. Hodes, D. Cahen, Stability of CdTe/CdS thin-film solar cells. Sol. Energy Mater. Sol. Cells 62(3), 295–325 (2000). https://doi.org/10.1016/s0927-0248(00)00014-3

    Article  CAS  Google Scholar 

  22. A. Morales-Acevedo, Thin film CdS/CdTe solar cells: research perspectives. Sol Energy 80(6), 675–681 (2006)

    Article  CAS  Google Scholar 

  23. J. Matthew Kurley, M.G. Panthani, R.W. Crisp, S.U. Nanayakkara, G.F. Pach, M.O. Reese, M.H. Hudson, Transparent ohmic contacts for solution-processed, ultrathin CdTe solar cells. ACS Energy Lett 2(1), 270–278 (2017)

    Article  Google Scholar 

  24. A. Mukherjee, P. Ghosh, A.A. Aboud, P. Mitra, Influence of copper incorporation in CdS: structural and morphological studies. Mater. Chem. Phys. 184, 101–109 (2016). https://doi.org/10.1016/j.matchemphys.2016.09.030

    Article  CAS  Google Scholar 

  25. S. Chandramohan, R. Sathyamoorthy, S. Lalitha, S. Senthilarasu, Structural properties of CdTe thin films on different substrates. Sol. Energy Mater. Sol. Cells 90, 686–693 (2006). https://doi.org/10.1016/j.solmat.2005.04.005

    Article  CAS  Google Scholar 

  26. S.L. Patel, S. Chander, M.D. Kannan, M.S. Dhaka, Impact of chloride treatment on the physical properties of polycrystalline thin CdTe films for solar cell applications. Phys Lett Sect General Atomic Solid State Phys 383(15), 1778–1781 (2019). https://doi.org/10.1016/j.physleta.2019.03.001

    Article  CAS  Google Scholar 

  27. H. Liu, A. Wang, Q. Sun, T. Wang, H. Zeng, Cu nanoparticles/fluorine-doped tin oxide (FTO) nanocomposites for photocatalytic H2 evolution under visible light irradiation. Catalysts (2017). https://doi.org/10.3390/catal7120385

    Article  Google Scholar 

  28. S.R. Sam, S.L. Rayar, P. Selvarajan, Effect of annealing and dopants on the physical properties of CdS nanoparticles. J Chem Pharm Res 7(3), 957–963 (2015)

    CAS  Google Scholar 

  29. A.A. Aboud, A. Mukherjee, N. Revaprasadu, A.N. Mohamed, The effect of Cu-doping on CdS thin films deposited by the spray pyrolysis technique. J. Market. Res. 8(2), 2021–2030 (2019). https://doi.org/10.1016/j.jmrt.2018.10.017

    Article  CAS  Google Scholar 

  30. Y. Deng, J. Yang, R. Yang, K. Shen, D. Wang, D. Wang, Cu-doped CdS and its application in CdTe thin film solar cell. AIP Adv. (2016). https://doi.org/10.1063/1.4939817

    Article  Google Scholar 

  31. R. Panda, M. Panda, H. Rath, U.P. Singh, R. Naik, N.C. Mishra, Annealing induced AgInSe2 formation from Ag/In/Ag/In multilayer film for solar cell absorbing layer. Opt. Mater. 84, 618–624 (2018). https://doi.org/10.1016/j.optmat.2018.07.049

    Article  CAS  Google Scholar 

  32. B. Cullity, S. Stock, Elements of X-ray diffraction, 3rd edn. (Princeton Hall, 2001)

    Google Scholar 

  33. M.N.M. Daud, A. Zakaria, A. Jafari, M.S.M. Ghazali, W.R. Wan Abdullah, Z. Zainal, Characterization of CdTe films deposited at various bath temperatures and concentrations using electrophoretic deposition. Int J Mol Sci 13(5), 5706–5714 (2012). https://doi.org/10.3390/ijms13055706

    Article  CAS  Google Scholar 

  34. K.S. Rahman, F. Haque, N.A. Khan, M.A. Islam, M.M. Alam, Z.A. Alothman, K. Sopian, N. Amin, Effect of CdCl2 treatment on thermally evaporated CdTe thin films. Chalcogen Lett 11(3), 129–139 (2014). https://doi.org/10.13140/2.1.2716.2883

    Article  Google Scholar 

  35. S. Chander, M.S. Dhaka, Impact of thermal annealing on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications. Phys E Low-dimensional Syst Nanostruct 80, 62–68 (2016). https://doi.org/10.1016/j.physe.2016.01.012

    Article  CAS  Google Scholar 

  36. I.M. Dharmadasa, P.A. Bingham, O.K. Echendu, H.I. Salim, T. Druffel, R. Dharmadasa, G.U. Sumanasekera, R.R. Dharmasena, M.B. Dergacheva, K.A. Mit, K.A. Urazov, L. Bowen, M. Walls, A. Abbas, Fabrication of CdS/CdTe-based thin film solar cells using an electrochemical technique. Coatings 4(3), 380–415 (2014). https://doi.org/10.3390/coatings4030380

    Article  CAS  Google Scholar 

  37. A.A. Ojo, I.M. Dharmadasa, Analysis of electrodeposited CdTe thin films grown using cadmium chloride precursor for applications in solar cells. J. Mater. Sci.: Mater. Electron. 28(19), 14110–14120 (2017). https://doi.org/10.1007/s10854-017-7264-0

    Article  CAS  Google Scholar 

  38. T.P. Shalvey, J.D. Major, Impact of NaF during chloride treatment of CdTe solar cells. Mater Sci Semicond Process (2020). https://doi.org/10.1016/j.mssp.2019.104827

    Article  Google Scholar 

  39. S. Chander, M.S. Dhaka, CdCl2 treatment concentration evolution of physical properties correlation with surface morphology of CdTe thin films for solar cells. Mater Res Bull (2018). https://doi.org/10.1016/j.materresbull.2017.08.038

    Article  Google Scholar 

  40. K.S. Rahman, F. Haque, N.A. Khan, M.A. Islam, M.M. Alam, Z.A. AlOthman, K. Sopian, N. Amin, Influence of thermal annealing on CdTe thin film deposited by thermal evaporation technique, in Proceeding of 2014 3rd international conference on the developments in renewable energy technology. (ICDRET, 2014)

    Google Scholar 

  41. K.S. Rahman, M.N. Harif, H.N. Rosly, M.I. Bin Kamaruzzaman, M. Akhtaruzzaman, M. Alghoul, H. Misran, N. Amin, Influence of deposition time in CdTe thin film properties grown by close-spaced sublimation (CSS) for photovoltaic application. Res Phys (2019). https://doi.org/10.1016/j.rinp.2019.102371

    Article  Google Scholar 

  42. A. Salavei, I. Rimmaudo, F. Piccinelli, D. Menossi, A. Bosio, N. Romeo, A. Romeo, Analysis of CdTe activation treatment with a novel approach, in 28th European photovoltaic solar energy conference and exhibition. (Research gate, 2014)

    Google Scholar 

  43. S.L. Patel, S. Chander, A. Purohit, M.D. Kannan, M.S. Dhaka, Influence of NH4Cl treatment on physical properties of CdTe thin films for absorber layer applications. J. Phys. Chem. Solids 123, 216–222 (2018). https://doi.org/10.1016/j.jpcs.2018.07.021

    Article  CAS  Google Scholar 

  44. S. Chandramohan, R. Sathyamoorthy, P. Sudhagar, D. Kanjila, D. Kabiraj, K. Asokan, V. Ganesan, Influence of SHI irradiation on the structure and surface topography of CdTe thin films on flexible substrate. J. Mater. Sci.: Mater. Electron. 18(11), 1093–1098 (2007). https://doi.org/10.1007/s10854-007-9137-4

    Article  CAS  Google Scholar 

  45. J. Rangel-Cárdenas, H. Sobral, Optical absorption enhancement in CdTe thin films by microstructuration of the silicon substrate. Materials (2017). https://doi.org/10.3390/ma10060607

    Article  Google Scholar 

  46. J.G. Quiñones-Galván, E. Camps, E. Campos-González, A. Hernández-Hernández, M.A. Santana- Aranda, A. Pérez-Centeno, J. Guillén-Cervantes, O. Santoyo-Salazar, F.M.F. Zelaya-Angel, Influence of plasma parameters and substrate temperature on the structural and optical properties of CdTe thin films deposited on glass by laser ablation. J Appl Phys 118(12), 125304 (2015). https://doi.org/10.1063/1.4931677

    Article  CAS  Google Scholar 

  47. F. Moure-Flores, J.G. Quiñones-Galván, A. Guillén-Cervantes, J.S. Arias-Cerón, A. Hernández-Hernández, J. Santoyo-Salazar, J. Santos-Cruz, S.A. Mayén-Hernández, M.L. de la Olvera, J.G. Mendoza-Álvarez, M. Meléndez-Lira, G. Contreras-Puente, CdTe thin films grown by pulsed laser deposition using powder as target: effect of substrate temperature. J. Cryst. Growth 386(27), 31 (2014). https://doi.org/10.1016/j.jcrysgro.2013.09.036

    Article  CAS  Google Scholar 

  48. J.M. Lugo, E. Rosendo, R. Romano-Trujillo, A.I. Oliva, H.P.L. De Guevara, C.I. Medel-Ruiz, L. Treviño-Yarce, J.S. Arellano, C. Morales, T. Díaz, G. García, Effects of the applied power on the properties of RF-sputtered CdTe films. Mater Res Exp 6(7), 076428 (2019). https://doi.org/10.1088/2053-1591/ab17c0

    Article  CAS  Google Scholar 

  49. J.I. Watanabe, T. Sekine, K. Uchinokura, E. Matsuura, Observation of increase in Raman intensity of surface phonon polaritons on rough surfaces of ZnTe. Solid State Commun. 51(5), 289–291 (1984)

    Article  CAS  Google Scholar 

  50. C. Frausto-Reyes, J.R. Molina-Contreras, C. Medina-Gutiérrez, S. Calixto, CdTe surface roughness by Raman spectroscopy using the 830 nm wavelength. Spectrochim Acta Part A Mol Biomol Spectrosc 65(1), 51–55 (2006). https://doi.org/10.1016/j.saa.2005.07.082

    Article  CAS  Google Scholar 

  51. N.K. Das, S.F.U. Farhad, J. Chakaraborty, A.K.S. Gupta, M. Dey, M. Al-Mamun, M.A. Matin, N. Amin, Structural and optical properties of RF-sputtered CdTe thin films grown on CdS:O/CdS bilayers. Int J Renew Energy Res 10(1), 293–302 (2020). https://doi.org/10.20508/ijrer.v10i1.10431.g7918

    Article  Google Scholar 

  52. S. Das, S. Senapati, D. Alagarasan, S. Varadhrajaperumal, R. Ganesan, R. Naik, Thermal annealing-induced transformation of structural, morphological, linear, and nonlinear optical parameters of quaternary As20Ag10Te10Se60 thin films for optical applications. ACS Appl Opt Mater 1(1), 17–31 (2023). https://doi.org/10.1021/acsaom.2c00002

    Article  CAS  Google Scholar 

  53. R. Naik, R.G. Ramakanta, K.S. Sangunni, Optical properties change with the addition and diffusion of Bi to As2S3 in the Bi/As2S3 bilayer thin film. J Alloys Compd 554, 293–298 (2013). https://doi.org/10.1016/j.jallcom.2012.11.198

    Article  CAS  Google Scholar 

  54. F. De Moure-Flores, J.G. Quiñones-Galván, A. Guillén-Cervantes, J. Santoyo-Salazar, A. Hernández-Hernández, M. De La Olvera, M. Zapata-Torres, M. Meléndez-Lira, Structural and optical properties of Cu-doped CdTe films with hexagonal phase grown by pulsed laser deposition. AIP Adv (2012). https://doi.org/10.1063/1.4721275

    Article  Google Scholar 

  55. F. Moure-Flores, J.G. Quiñones-Galván, A. Guillén-Cervantes, J.S. Arias-Cerón, G. Contreras-Puente, A. Hernández-Hernández, J. Santoyo-Salazar, M. De La Olvera, M.A. Santana-Aranda, M. Zapata-Torres, J.G. Mendoza-Álvarez, M. Meléndez-Lira, Physical properties of CdTe: Cu films grown at low temperature by pulsed laser deposition. J Appl Phys (2012). https://doi.org/10.1063/1.4768455

    Article  Google Scholar 

  56. N. Naeema, A. Kudher, G.H. Mohammed, Structural and optical properties of CdTe:Cu thin films by pulsed laser deposition technique. IOP Conf Series Mater Sci Eng (2020). https://doi.org/10.1088/1757-899X/757/1/012024

    Article  Google Scholar 

  57. M. Singh, M. Goyal, K. Devlal, Size and shape effects on the band gap of semiconductor compound nanomaterials. J Taibah Univ Sci 12(4), 470–475 (2018). https://doi.org/10.1080/16583655.2018.1473946

    Article  Google Scholar 

  58. S. Lalitha, R. Sathyamoorthy, S. Senthilarasu, A. Subbarayan, K. Natarajan, Characterization of CdTe thin film—Dependence of structural and optical properties on temperature and thickness. Sol. Energy Mater. Sol. Cells 82(1–2), 187–199 (2004). https://doi.org/10.1016/j.solmat.2004.01.017

    Article  CAS  Google Scholar 

  59. D. Sahoo, P. Priyadarshini, R. Dandela, D. Alagarasan, R. Ganesan, S. Varadharajaperumal, R. Naik, Optimization of linear and nonlinear optical parameters in As40Se60 film by annealing at different temperature. Optik 219, 165286 (2020). https://doi.org/10.1016/j.ijleo.2020.165286

    Article  CAS  Google Scholar 

  60. C. Doroody, K.S. Rahman, S.F. Abdullah, M.N. Harif, H.N. Rosly, S.K. Tiong, N. Amin, Temperature difference in close-spaced sublimation (CSS) growth of CdTe thin film on ultra-thin glass substrate. Res Phys 18, 103213 (2020). https://doi.org/10.1016/j.rinp.2020.103213

    Article  Google Scholar 

  61. Z. Ma, K.M. Yu, Copper-doped CdTe films with improved hole mobility. Appl. Phys. Lett. 91(9), 2–5 (2007). https://doi.org/10.1063/1.2778455

    Article  CAS  Google Scholar 

  62. D.B. Li, S.S. Bista, Z. Song, R.A. Awni, K.K. Subedi, N. Shrestha, P. Pradhan, L. Chen, E. Bastola, C.R. Grice, A.B. Phillips, M.J. Heben, R.J. Ellingson, Y. Yan, Maximize CdTe solar cell performance through copper activation engineering. Nano Energy (2020). https://doi.org/10.1016/j.nanoen.2020.104835

    Article  Google Scholar 

  63. A.U. Ubale, D.K. Kulkarni, Studies on size dependent properties of cadmium telluride thin films deposited by using successive ionic layer adsorption and reaction method. Indian J Pure Appl Phys 44(3), 254–259 (2006)

    CAS  Google Scholar 

Download references

Funding

The author declare that no funds, grants or other support were received during preparation of manuscript.

Author information

Authors and Affiliations

Authors

Contributions

IJ—Investigation, visualization, formal analysis, data curation, writing—original draft preparation. UPS—Conceptualization, supervision, methodology, resources Validation, writing—review and editing.

Corresponding author

Correspondence to Udai P. Singh.

Ethics declarations

Competing interest

The authors have no relevant financial or non financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jena, I., Singh, U.P. Impact of thin layer of copper on cadmium telluride and cadmium sulfide thin films. J Mater Sci: Mater Electron 34, 1117 (2023). https://doi.org/10.1007/s10854-023-10515-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10515-6

Navigation