Skip to main content
Log in

Silicon quantum dots prepared by electrochemical etching and their application in solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We demonstrated that silicon quantum dots (SiQDs) with bright photoluminescence (PL) were produced by an electrochemical etching process. The PL intensity of functionalized porous silicon (PSi) with respect to time was investigated. Stable surface-modified SiQD dispersions were obtained using thermally induced hydrosilylation with octadecene. Various concentrations of SiQDs were spin-coated on Si solar cells (SiSCs) and perovskite solar cells (PSCs) to improve the performance of the solar cells. The external quantum efficiency (EQE) of the optimal sample showed that the current density increased from 37.4 to 39.2 mA/cm2. The EQE increased to 98% compared with the initial value of 95% in the visible spectrum region. The experimental results showed that the reflectivity of the solar cells could be reduced by applying a certain amount of SiQDs on different solar cells. The power conversion efficiency (PCE) of SiSCs increased by 0.81%, and the PCE of PSCs increased by 0.61% after coating with SiQDs. Furthermore, when exposed to intense radiation in a UV aging chamber, both SiSCs and PSCs experienced reduced PCE loss by 0.11% and 0.62%, respectively, owing to the application of SiQDs on their surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. D. Timmerman, I. Izeddin, P. Stallinga, I.N. Yassievich, T. Gregorkiewicz, Nat. Photonics 2, 105–109 (2008)

    Article  CAS  Google Scholar 

  2. S. Park, E. Cho, D.Y. Song, G. Conibeer, M.A. Green, Sol. Energy Mat. Sol. Cells 93, 684–690 (2009)

    Article  CAS  Google Scholar 

  3. V.I. Klimov, J. Phys. Chem. B 110, 16827–16845 (2006)

    Article  CAS  Google Scholar 

  4. D. Di, I. Perez-Wurfl, A. Gentle, D.H. Kim, X. Hao, L. Shi, G. Conibeer, M.A. Green, Nanoscale Res. Lett. 5, 1762–1767 (2010)

    Article  CAS  Google Scholar 

  5. E.C. Cho, S. Park, X.J. Hao, D.Y. Song, G. Conibeer, S.C. Park, M.A. Green, Nanotechnology 19, 245201 (2008)

    Article  Google Scholar 

  6. X.D. Pi, Q. Li, D.S. Li, D.R. Yang, Sol. Energy Mat. Sol. Cells 95, 2941–2945 (2011)

    Article  CAS  Google Scholar 

  7. S.H. Lee, G.Y. Kwak, S.W. Hong, C.H. Kim, S. Kim, A. Kim, K.J. Kim, Nanotechnology 28, 035402 (2017)

    Article  Google Scholar 

  8. D.C. Nguyen, Y. Ishikawa, S. Jonai, K. Nakamura, A. Masuda, Y. Uraoka, Sol. Energy 199, 56–62 (2020)

    Article  Google Scholar 

  9. M.A. Islam, T. Oshima, D. Kobayashi, H. Matsuzaki, H. Nakahama, Y. Ishikawa, Jpn J. Appl. Phys. 57, 08RG14 (2018)

    Article  Google Scholar 

  10. A. Poskela, K. Miettunen, A. Tiihonen, P.D. Lund, Energy Sci. Eng. 9, 19–26 (2020)

    Article  Google Scholar 

  11. Q. Masaadeh, E. Kaplani, Y.M. Chao, Electronics 11, 2433 (2022)

    Article  CAS  Google Scholar 

  12. A.H. Sabeeh, A.N. Brigeman, J. Ruzyllo, IEEE J. Photovoltaics 9, 1006–1011 (2019)

    Article  Google Scholar 

  13. G. Peng, X.Y. Yu, Y.L. He, G.Y. Li, Y.X. Liu, X.F. Zhang, X.A. Zhang, Front. Phys. 13, 137802 (2018)

    Article  Google Scholar 

  14. O. Wolf, M. Dasog, Z. Yang, I. Balberg, J.G.C. Veinot, O. Millo, Nano Lett. 13, 2516–2521 (2013)

    Article  CAS  Google Scholar 

  15. V. Svrcek, A. Slaoui, J.C. Muller, Thin Solid Films 451, 384–388 (2004)

    Article  Google Scholar 

  16. L.T. Canham, Appl. Phys. Lett. 57, 1046–1048 (1990)

    Article  CAS  Google Scholar 

  17. X.G. Li, Y.Q. He, S.S. Talukdar, M.T. Swihart, Langmuir 19, 8490–8496 (2003)

    Article  CAS  Google Scholar 

  18. J. Nelles, D. Sendor, A. Ebbers, F.M. Petrat, H. Wiggers, C. Schulz, U. Simon, Colloid Polym. Sci. 285, 729–736 (2007)

    Article  CAS  Google Scholar 

  19. M.H. Mobarok, T.K. Purkait, M.A. Islam, M. Miskolzie, J.G.C. Veinot, Angew Chem. Int. Ed. 56, 6073–6077 (2017)

    Article  CAS  Google Scholar 

  20. Z.Y. Yang, M.H. Wahl, J.G.C. Veinot, Can. J. Chem. 92, 951–957 (2014)

    Article  CAS  Google Scholar 

  21. Q.S. Li, R.Q. Zhang, S.T. Lee, T.A. Niehaus, T. Frauenheim, J. Chem. Phys. 128, 244714 (2008)

    Article  CAS  Google Scholar 

  22. X.G. Li, Y.Q. He, M.T. Swihart, Langmuir 20, 4720–4727 (2004)

    Article  CAS  Google Scholar 

  23. J.P. Proot, C. delerue, G. Allan, Appl. Phys. Lett. 61, 1948–1950 (1992)

    Article  CAS  Google Scholar 

  24. M.V. Wolkin, J. Jorne, P.M. Fauchet, G. Allan, C. Delerue, Phys. Rev. Lett. 82, 197–200 (1999)

    Article  CAS  Google Scholar 

  25. H. Koyama, M. Araki, Y. Yamamoto, N. Koshida, Jpn J. Appl. Phys. 30, 3606–3609 (1991)

    Article  CAS  Google Scholar 

  26. Z. Sassi, J.C. Bureau, A. Bakkali, Vib. Spectrosc. 28, 299 (2002)

    Article  CAS  Google Scholar 

  27. D.V. Tsu, G. Lucovsky, B.N. Davidson, Phys. Rev. B 40, ,1795 (1989)

    Article  CAS  Google Scholar 

  28. X. Zhang, D. Neiner, S. Wang, A.Y. Louie, S.M. Kauzlarich, Nanotechnology 18, 095601 (2007)

    Article  Google Scholar 

  29. J. Nelles, D. Sendor, M. Bertmer, A. Ebbers, F.M. Petrat, U. Simon, J. Nanosci. Nanotechnol 7, 2818 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank Dr. Peng You for supplying PSC samples and Dr. Zeguo Tang for solar cell characterizations. This work was supported by Research Program of Shen Zhen Technology University (No.20213108010017).

Funding

This work was supported by Research Program of SZTU(No.20213108010017).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Ren Chen. The first draft of the manuscript was written by Ren Chen and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yunfei Hu.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Hu, Y., Li, X. et al. Silicon quantum dots prepared by electrochemical etching and their application in solar cells. J Mater Sci: Mater Electron 34, 1105 (2023). https://doi.org/10.1007/s10854-023-10513-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10513-8

Navigation