Abstract
Zinc oxide was grown onto glass substrates by the spray-pyrolysis technique in order to obtain thin films of different thicknesses to test their sensing characteristics towards CO2 and CO at room temperature (21 °C). The different films showed a diverse surface reactivity towards these gases due to the dominant crystallographic orientation of grains. The working temperature allows the sensor to operate without the need of maintaining the film heated, greatly reducing its energy needs and building costs. A 2% signal decrease to 2000 ppm of CO2 is achieved within 120 s (t50 time) with a recovery time of approximately 290 s. The detection limit is estimated to be at 400 ppm. This sensor can also detect harmful concentration of CO (above 50 ppm) since its response can be clearly differentiated from its CO2 response, thus behaving as a dual sensor.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
Data will be available upon request.
References
W.J. Fisk, D.P. Sullivan, D. Faulkner, E. Eliseeva, CO2 monitoring for demand-controlled ventilation in commercial buildings. Lawrence Berkeley National Laboratory (2010). https://indoor.lbl.gov/publications/co2-monitoring-demand-controlled
Occupational Safety and Health Administration (OSHA), Potential carbon dioxide (CO2) asphyxiation hazard when filling stationary low pressure CO2 supply systems, United States Department of Labor. https://www.osha.gov/publications/hib19960605
S. Neethirajan, D.S. Jayas, S. Sadistap, Carbon dioxide (CO2) sensors for the agri-food industry—a review. Food Bioprocess Technol 2, 115–121 (2009). https://doi.org/10.1007/s11947-008-0154-y
N. Barsan, D. Koziej, U. Weimar, Metal oxide-based gas sensor research: how to? Sens. Actuators B 121, 18–35 (2007)
Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 95, 041301 (2005)
N. Barsan, U. Weimar, Conduction model of metal oxide gas sensors. J. Electroceram. 7, 143–167 (2001)
S.K. Gupta, A. Joshi, M. Kaur, Development of gas sensors using ZnO nanostructures. J. Chem. Sci. 122, 57–62 (2010)
J. Wang, S. Fan, Y. Xia, C. Yang, S. Komarneni, Room-temperature gas sensors based on ZnO nanorod/Au hybrids: visible-light-modulated dual selectivity to NO2 and NH3. J. Haz. Mat. 381, 120919 (2020)
S.-W. Fan, A.K. Srivastava, V.P. Dravid, UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Appl. Phys. Lett. 95, 142106 (2009)
A. Ayana, N.V. Gummagol, P.S. Patil, P. Sharma, B.V. Rajendra, Enhancement of optical limiting performance in nanocrystalline La3+ doped ZnO film. Mater. Sci. Semicond. Process 133, 105931 (2021). https://doi.org/10.1016/j.mssp.2021.105931
H.S. Sindhu, S.R. Maidur, P. Patil, P.S. Rajendra, Influence of structure and surface morphology on optical limiting property of spray pyrolyzed ZCO thin films. Chem. Phys. Lett. 759, 137975 (2020). https://doi.org/10.1016/j.cplett.2020.137975
D.S. Jung, S.B. Park, Y.C. Kang, Design of particles by spray pyrolysis and recent progress in its application. Korean J. Chem. Eng. 27(6), 1621–1645 (2010). https://doi.org/10.1007/s11814-010-0402-5
M. Shaban, S. Ali, M. Rabia, Design and application of nanoporous graphene oxide film for CO2, H2, and C2H2 gases sensing. J. Mater. Res. Technnol. 8(5), 4510–4520 (2019). https://doi.org/10.1016/j.jmrt.2019.07.064
G. Kumar Mani, J.B. Balaguru Rayappan, Facile synthesis of ZnO nanostructures by spray pyrolysis technique and its application as highly selective H2S sensor. Mater. Lett. 158, 373–376 (2015). https://doi.org/10.1016/j.matlet.2015.05.006
G. Kumar Mani, J.B. Balaguru Rayappan, A highly selective and wide range ammonia sensor nanostructured ZnO: Co thin film. Mater. Sci. Eng. B 191, 41–50 (2015). https://doi.org/10.1016/j.mseb.2014.10.007
K. Vijayalakshmi, D. Gopalakrishna, Influence of pyrolytic temperature on the properties of ZnO films optimized for H2 sensing application. J. Mater. Sci.: Mater. Electron 25, 2253–2260 (2014). https://doi.org/10.1007/s10854-014-1868-4
A. Osaka, S. Takao, K. Oda, J. Takada, Y. Miutra, The diffusion of sodium ions into tin oxide thin films from glass substrates. Memoirs of the Faculty of Engineering, Okayama University, vol. 24, no. 1 (1989). https://doi.org/10.18926/15474
G. Turgut, E. Sönmez, M. Yılmaz, M.S. Çögenli, M. Yılmaz, U. Turgut, R. Dilber, The variation of the features of SnO2 and SnO2: F thin films as a function of V dopant. J. Mater. Sci. Mater. Electron. 25(6), 2808–2828 (2014). https://doi.org/10.1007/s10854-014-1946-7
X.-G. Han, H.-Z. He, Q. Kuang, X. Zhou, X.-H. Zhang, T. Xu, Z.-X. Xie, L.-S. Zheng, Controlling morphologies and tuning the related properties of nano/microstructured ZnO crystallites. J. Phys. Chem. C 113, 584–589 (2009). https://doi.org/10.1021/jp808233e
A. Gurlo, Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale 3, 154 (2011). https://doi.org/10.1039/c0nr00560f
V.A. Gercher, D.F. Cox, Water adsorption on stoichiometric and defective SnO2 110 surfaces. Surf. Sci. 322, 177 (1995). https://doi.org/10.1016/0039-6028(95)90028-4
WHO Guidelines for Indoor Air Quality: Selected Pollutants, National Library of Medicine, National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/books/NBK138710/
N. Yamazoe, K. Shimanoe, Theory of power laws for semiconductor gas sensors. Sens. Actuators B 128, 566–573 (2008). https://doi.org/10.1016/j.snb.2007.07.036
K.V. Sopiha, O.I. Malyi, C. Persson, P. Wu, Chemistry of oxygen ionosorption on SnO2 surfaces. ACS Appl. Mater. Interfaces 13(28), 33664–33676 (2021)
P.K. Kannan, R. Saraswathi, J.B.B. Rayappan, A highly sensitive humidity sensor based on DC reactive magnetron sputtered zinc oxide thin film. Sens. Actuators A 164, 8–14 (2010)
E.W. Thornton, P.G. Harrison, Surface hydroxyl groups and the chemisorption of carbon dioxide and carbon monoxide on tin(IV) oxide. J. Chem. Soc. Faraday Trans. 71, 461–472 (1975)
G.B. Damas, C.R. Miranda, R. Sgarbi, J.M. Portela, M.R. Camilo, F.H.B. Lima, C. Moyses Araujo, On the mechanism of carbon dioxide reduction on Sn-based electrodes: insights into the role of oxide surfaces. Catalysts 9, 636 (2019). https://doi.org/10.3390/catal9080636
I.-D. Kim, A. Rothschild, T. Hyodo, H.L. Tuller, Microsphere templating as means of enhancing surface activity and gas sensitivity of CaCu3Ti4O12 thin films. Nano Letters 6, 193–198 (2006). https://doi.org/10.1021/nl051965p
F. Schipani, C.M. Aldao, M.A. Ponce, Schottky barriers measurements through Arrhenius plots in gas sensors. AIP Adv. 2, 032138 (2012). https://doi.org/10.1063/1.4746417
B. Kamp, R. Merkle, J. Maier, Chemical diffusion of oxygen in tin dioxide. Sens. Actuators B 77, 534–542 (2001). https://doi.org/10.1016/S0925-4005(01)00694-3
C.M. Aldao, F. Schipani, M.A. Ponce, E. Joanni, F.J. Williams, Conductivity in SnO2 polycrystalline thick film gas sensors tunneling electron transport and oxygen diffusion. Sens. Actuators B 193, 428–433 (2014). https://doi.org/10.1016/j.snb.2013.11.114
F. Schipani, M.A. Ponce, E. Joanni, F.J. Williams, C.M. Aldao, Study of the oxygen vacancies changes in SnO2 polycrystalline thick films using impedance and photoemission spectroscopies. J. Appl. Phys. 116, 194502 (2014). https://doi.org/10.1063/1.4902150
C.R. Crowell, V.L. Rideout, Normalized thermionic-field (T-F) emission in metal-semiconductor (Schottky) barriers. Solid-State Electronics 12(2), 89–105 (1969). https://doi.org/10.1016/0038-1101(69)90117-8
M.J. Madou, S. Roy Morrison, Chemical Sensing with Solid State Devices (Elsevier, Amsterdam, 2012)
E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts, 2nd edn. (Oxford Science, Oxford, 1988)
B. Altun, I. Karaduman Er, A. Orkun Çağırtekin, A. Ajjaq, F. Sarf, S. Acar, Effect of Cd dopant on structural, optical and CO2 gas sensing properties of ZnO thin film sensors fabricated by chemical bath deposition method. Appl. Phys. A (2021). https://doi.org/10.1007/s00339-021-04843-9
M.A. Basyooni, Y. Ramazan Eker, M. Yilmaz, Structural, optical, electrical and room temperature gas sensing characterizations of spin coated multilayer cobalt-doped tin oxide thin films. Superlatt. Microstruct. 140, 106465 (2020). https://doi.org/10.1016/j.spmi.2020.106465
D. Mardare, C. Adomnitei, D. Florea, D. Luca, A. Yildiz, The effect of CO2 gas adsorption on the electrical properties of Fe doped TiO2 films. Phys. B: Condens. Matter 524, 17–211 (2017). https://doi.org/10.1016/j.physb.2017.08.029
T.A. Taha, R. Saad, M. Zayed, M. Shaban, A.M. Ahmed, Tuning the surface morphologies of ZnO nanofilms for enhanced sensitivity and selectivity of CO2 gas sensor. Appl. Phys. A (2023). https://doi.org/10.1007/s00339-023-06387-6
M. Vanaraja, K. Muthukrishnan, S. Boomadevi, R. Kumar Karn, V. Singh, P.K. Singh, K. Pandiyan, Dip coated nanostructured ZnO thin film: Synthesis and application. Ceram. Int. 42, 4413–4420 (2016). https://doi.org/10.1016/j.ceramint.2015.11.125
Acknowledgments
The work of F. Schipani is partially supported by the Alexander Von Humboldt Foundation and the Agencia Nacional de Promoción Científica y Tecnológica (Argentina) with a PICT 2018-0574. The authors want to thanks D. Mirabella for stimulating discussions.
Funding
This study was supported by Alexander von Humboldt-Stiftung (Grant No. ANPCyT,0574-2018).
Author information
Authors and Affiliations
Contributions
All authors contributed equally to the manuscript
Corresponding author
Ethics declarations
Conflict of interest
Authors declare that there are no conflicts of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Schipani, F., Villegas, E.A., Ramajo, L.A. et al. Zinc oxide thin films for a room temperature dual carbon dioxide and carbon monoxide sensor. J Mater Sci: Mater Electron 34, 1092 (2023). https://doi.org/10.1007/s10854-023-10507-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10854-023-10507-6