Skip to main content
Log in

Zinc oxide thin films for a room temperature dual carbon dioxide and carbon monoxide sensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zinc oxide was grown onto glass substrates by the spray-pyrolysis technique in order to obtain thin films of different thicknesses to test their sensing characteristics towards CO2 and CO at room temperature (21 °C). The different films showed a diverse surface reactivity towards these gases due to the dominant crystallographic orientation of grains. The working temperature allows the sensor to operate without the need of maintaining the film heated, greatly reducing its energy needs and building costs. A 2% signal decrease to 2000 ppm of CO2 is achieved within 120 s (t50 time) with a recovery time of approximately 290 s. The detection limit is estimated to be at 400 ppm. This sensor can also detect harmful concentration of CO (above 50 ppm) since its response can be clearly differentiated from its CO2 response, thus behaving as a dual sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data will be available upon request.

References

  1. W.J. Fisk, D.P. Sullivan, D. Faulkner, E. Eliseeva, CO2 monitoring for demand-controlled ventilation in commercial buildings. Lawrence Berkeley National Laboratory (2010). https://indoor.lbl.gov/publications/co2-monitoring-demand-controlled

  2. Occupational Safety and Health Administration (OSHA), Potential carbon dioxide (CO2) asphyxiation hazard when filling stationary low pressure CO2 supply systems, United States Department of Labor. https://www.osha.gov/publications/hib19960605

  3. S. Neethirajan, D.S. Jayas, S. Sadistap, Carbon dioxide (CO2) sensors for the agri-food industry—a review. Food Bioprocess Technol 2, 115–121 (2009). https://doi.org/10.1007/s11947-008-0154-y

    Article  CAS  Google Scholar 

  4. N. Barsan, D. Koziej, U. Weimar, Metal oxide-based gas sensor research: how to? Sens. Actuators B 121, 18–35 (2007)

    Article  CAS  Google Scholar 

  5. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 95, 041301 (2005)

    Article  Google Scholar 

  6. N. Barsan, U. Weimar, Conduction model of metal oxide gas sensors. J. Electroceram. 7, 143–167 (2001)

    Article  CAS  Google Scholar 

  7. S.K. Gupta, A. Joshi, M. Kaur, Development of gas sensors using ZnO nanostructures. J. Chem. Sci. 122, 57–62 (2010)

    Article  CAS  Google Scholar 

  8. J. Wang, S. Fan, Y. Xia, C. Yang, S. Komarneni, Room-temperature gas sensors based on ZnO nanorod/Au hybrids: visible-light-modulated dual selectivity to NO2 and NH3. J. Haz. Mat. 381, 120919 (2020)

    Article  CAS  Google Scholar 

  9. S.-W. Fan, A.K. Srivastava, V.P. Dravid, UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Appl. Phys. Lett. 95, 142106 (2009)

    Article  Google Scholar 

  10. A. Ayana, N.V. Gummagol, P.S. Patil, P. Sharma, B.V. Rajendra, Enhancement of optical limiting performance in nanocrystalline La3+ doped ZnO film. Mater. Sci. Semicond. Process 133, 105931 (2021). https://doi.org/10.1016/j.mssp.2021.105931

    Article  CAS  Google Scholar 

  11. H.S. Sindhu, S.R. Maidur, P. Patil, P.S. Rajendra, Influence of structure and surface morphology on optical limiting property of spray pyrolyzed ZCO thin films. Chem. Phys. Lett. 759, 137975 (2020). https://doi.org/10.1016/j.cplett.2020.137975

    Article  CAS  Google Scholar 

  12. D.S. Jung, S.B. Park, Y.C. Kang, Design of particles by spray pyrolysis and recent progress in its application. Korean J. Chem. Eng. 27(6), 1621–1645 (2010). https://doi.org/10.1007/s11814-010-0402-5

    Article  CAS  Google Scholar 

  13. M. Shaban, S. Ali, M. Rabia, Design and application of nanoporous graphene oxide film for CO2, H2, and C2H2 gases sensing. J. Mater. Res. Technnol. 8(5), 4510–4520 (2019). https://doi.org/10.1016/j.jmrt.2019.07.064

    Article  CAS  Google Scholar 

  14. G. Kumar Mani, J.B. Balaguru Rayappan, Facile synthesis of ZnO nanostructures by spray pyrolysis technique and its application as highly selective H2S sensor. Mater. Lett. 158, 373–376 (2015). https://doi.org/10.1016/j.matlet.2015.05.006

    Article  CAS  Google Scholar 

  15. G. Kumar Mani, J.B. Balaguru Rayappan, A highly selective and wide range ammonia sensor nanostructured ZnO: Co thin film. Mater. Sci. Eng. B 191, 41–50 (2015). https://doi.org/10.1016/j.mseb.2014.10.007

    Article  CAS  Google Scholar 

  16. K. Vijayalakshmi, D. Gopalakrishna, Influence of pyrolytic temperature on the properties of ZnO films optimized for H2 sensing application. J. Mater. Sci.: Mater. Electron 25, 2253–2260 (2014). https://doi.org/10.1007/s10854-014-1868-4

    Article  CAS  Google Scholar 

  17. A. Osaka, S. Takao, K. Oda, J. Takada, Y. Miutra, The diffusion of sodium ions into tin oxide thin films from glass substrates. Memoirs of the Faculty of Engineering, Okayama University, vol. 24, no. 1 (1989). https://doi.org/10.18926/15474

  18. G. Turgut, E. Sönmez, M. Yılmaz, M.S. Çögenli, M. Yılmaz, U. Turgut, R. Dilber, The variation of the features of SnO2 and SnO2: F thin films as a function of V dopant. J. Mater. Sci. Mater. Electron. 25(6), 2808–2828 (2014). https://doi.org/10.1007/s10854-014-1946-7

    Article  CAS  Google Scholar 

  19. X.-G. Han, H.-Z. He, Q. Kuang, X. Zhou, X.-H. Zhang, T. Xu, Z.-X. Xie, L.-S. Zheng, Controlling morphologies and tuning the related properties of nano/microstructured ZnO crystallites. J. Phys. Chem. C 113, 584–589 (2009). https://doi.org/10.1021/jp808233e

    Article  CAS  Google Scholar 

  20. A. Gurlo, Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale 3, 154 (2011). https://doi.org/10.1039/c0nr00560f

    Article  CAS  Google Scholar 

  21. V.A. Gercher, D.F. Cox, Water adsorption on stoichiometric and defective SnO2 110 surfaces. Surf. Sci. 322, 177 (1995). https://doi.org/10.1016/0039-6028(95)90028-4

    Article  CAS  Google Scholar 

  22. WHO Guidelines for Indoor Air Quality: Selected Pollutants, National Library of Medicine, National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/books/NBK138710/

  23. N. Yamazoe, K. Shimanoe, Theory of power laws for semiconductor gas sensors. Sens. Actuators B 128, 566–573 (2008). https://doi.org/10.1016/j.snb.2007.07.036

    Article  CAS  Google Scholar 

  24. K.V. Sopiha, O.I. Malyi, C. Persson, P. Wu, Chemistry of oxygen ionosorption on SnO2 surfaces. ACS Appl. Mater. Interfaces 13(28), 33664–33676 (2021)

    Article  CAS  Google Scholar 

  25. P.K. Kannan, R. Saraswathi, J.B.B. Rayappan, A highly sensitive humidity sensor based on DC reactive magnetron sputtered zinc oxide thin film. Sens. Actuators A 164, 8–14 (2010)

    Article  CAS  Google Scholar 

  26. E.W. Thornton, P.G. Harrison, Surface hydroxyl groups and the chemisorption of carbon dioxide and carbon monoxide on tin(IV) oxide. J. Chem. Soc. Faraday Trans. 71, 461–472 (1975)

    Article  CAS  Google Scholar 

  27. G.B. Damas, C.R. Miranda, R. Sgarbi, J.M. Portela, M.R. Camilo, F.H.B. Lima, C. Moyses Araujo, On the mechanism of carbon dioxide reduction on Sn-based electrodes: insights into the role of oxide surfaces. Catalysts 9, 636 (2019). https://doi.org/10.3390/catal9080636

    Article  CAS  Google Scholar 

  28. I.-D. Kim, A. Rothschild, T. Hyodo, H.L. Tuller, Microsphere templating as means of enhancing surface activity and gas sensitivity of CaCu3Ti4O12 thin films. Nano Letters 6, 193–198 (2006). https://doi.org/10.1021/nl051965p

    Article  CAS  Google Scholar 

  29. F. Schipani, C.M. Aldao, M.A. Ponce, Schottky barriers measurements through Arrhenius plots in gas sensors. AIP Adv. 2, 032138 (2012). https://doi.org/10.1063/1.4746417

    Article  CAS  Google Scholar 

  30. B. Kamp, R. Merkle, J. Maier, Chemical diffusion of oxygen in tin dioxide. Sens. Actuators B 77, 534–542 (2001). https://doi.org/10.1016/S0925-4005(01)00694-3

    Article  CAS  Google Scholar 

  31. C.M. Aldao, F. Schipani, M.A. Ponce, E. Joanni, F.J. Williams, Conductivity in SnO2 polycrystalline thick film gas sensors tunneling electron transport and oxygen diffusion. Sens. Actuators B 193, 428–433 (2014). https://doi.org/10.1016/j.snb.2013.11.114

    Article  CAS  Google Scholar 

  32. F. Schipani, M.A. Ponce, E. Joanni, F.J. Williams, C.M. Aldao, Study of the oxygen vacancies changes in SnO2 polycrystalline thick films using impedance and photoemission spectroscopies. J. Appl. Phys. 116, 194502 (2014). https://doi.org/10.1063/1.4902150

    Article  CAS  Google Scholar 

  33. C.R. Crowell, V.L. Rideout, Normalized thermionic-field (T-F) emission in metal-semiconductor (Schottky) barriers. Solid-State Electronics 12(2), 89–105 (1969). https://doi.org/10.1016/0038-1101(69)90117-8

    Article  Google Scholar 

  34. M.J. Madou, S. Roy Morrison, Chemical Sensing with Solid State Devices (Elsevier, Amsterdam, 2012)

    Google Scholar 

  35. E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts, 2nd edn. (Oxford Science, Oxford, 1988)

    Google Scholar 

  36. B. Altun, I. Karaduman Er, A. Orkun Çağırtekin, A. Ajjaq, F. Sarf, S. Acar, Effect of Cd dopant on structural, optical and CO2 gas sensing properties of ZnO thin film sensors fabricated by chemical bath deposition method. Appl. Phys. A (2021). https://doi.org/10.1007/s00339-021-04843-9

    Article  Google Scholar 

  37. M.A. Basyooni, Y. Ramazan Eker, M. Yilmaz, Structural, optical, electrical and room temperature gas sensing characterizations of spin coated multilayer cobalt-doped tin oxide thin films. Superlatt. Microstruct. 140, 106465 (2020). https://doi.org/10.1016/j.spmi.2020.106465

    Article  CAS  Google Scholar 

  38. D. Mardare, C. Adomnitei, D. Florea, D. Luca, A. Yildiz, The effect of CO2 gas adsorption on the electrical properties of Fe doped TiO2 films. Phys. B: Condens. Matter 524, 17–211 (2017). https://doi.org/10.1016/j.physb.2017.08.029

    Article  CAS  Google Scholar 

  39. T.A. Taha, R. Saad, M. Zayed, M. Shaban, A.M. Ahmed, Tuning the surface morphologies of ZnO nanofilms for enhanced sensitivity and selectivity of CO2 gas sensor. Appl. Phys. A (2023). https://doi.org/10.1007/s00339-023-06387-6

    Article  Google Scholar 

  40. M. Vanaraja, K. Muthukrishnan, S. Boomadevi, R. Kumar Karn, V. Singh, P.K. Singh, K. Pandiyan, Dip coated nanostructured ZnO thin film: Synthesis and application. Ceram. Int. 42, 4413–4420 (2016). https://doi.org/10.1016/j.ceramint.2015.11.125

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work of F. Schipani is partially supported by the Alexander Von Humboldt Foundation and the Agencia Nacional de Promoción Científica y Tecnológica (Argentina) with a PICT 2018-0574. The authors want to thanks D. Mirabella for stimulating discussions.

Funding

This study was supported by Alexander von Humboldt-Stiftung (Grant No. ANPCyT,0574-2018).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the manuscript

Corresponding author

Correspondence to Federico Schipani.

Ethics declarations

Conflict of interest

Authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4214 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schipani, F., Villegas, E.A., Ramajo, L.A. et al. Zinc oxide thin films for a room temperature dual carbon dioxide and carbon monoxide sensor. J Mater Sci: Mater Electron 34, 1092 (2023). https://doi.org/10.1007/s10854-023-10507-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10507-6

Navigation