Skip to main content
Log in

Enhanced piezoelectricity and excellent thermal stability in modified BiFeO3–PbTiO3-based high-temperature piezoelectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ferroelectric ceramics possessing excellent piezoelectricity and high-temperature stability simultaneously are significant for sensor and actuation applications in severe environment such as extraterrestrial exploration and petroleum extraction. Herein, a novel (0.735−x)(Bi0.972La0.028)FeO3–0.265PbTiO3xBa(Zr0.2Ti0.8)O3 (abbreviated as (0.735−x)BLF–0.265PT–xBZT) was reported to own excellent piezoelectric coefficient d33 value of ~ 394 pC/N with good temperature stability and high Curie temperature TC value of ~ 445 °C, simultaneously, at x = 0.14, which is just located at the tetragonal (T)-rich side of rhombohedral (R)-T morphotropic phase boundary (MPB). It reveals that the compositions undergo an obvious phase from R phase to T phase via an R–T MPB, and finally to the coexistence of T and pseudo-cubic (PC) phases, which is found to be accompanied by the normal-relaxor ferroelectric transformation. The significant enhancement of the piezoelectric activity in x = 0.14 sample can be attributed to synergistic effect of R–T MPB and the normal-relaxor ferroelectric transformation, leading to the significantly enhanced domain switching although the sample exhibits a relatively large T distortion of ~ 1.039. In addition, the large tetragonality of T phase allows the sample to maintain high TC value. The present work provides a guideline for the subsequent design of BF–PT-based high-temperature piezoelectric ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

On behalf of all other authors, I abide the rules and regulation of publication of research data policy and data availability statements of the journal.

References

  1. H. Jaffe, D.A. Berlincourt, Piezoelectric transducer materials. Proc. IEEE. 53(10), 1372–1386 (1965)

    Article  Google Scholar 

  2. D.I. Woodward, I.M. Reaney, C.A. Randall et al., Crystal and domain structure of the BiFeO3–PbTiO3 solid solution. J. Appl. Phys. 94(5), 3313–3318 (2003)

    Article  CAS  Google Scholar 

  3. T.P. Comyn, S.P. McBride, A.J. Bell, Processing and electrical properties of BiFeO3–PbTiO3 ceramics. Mater. Lett. 58(30), 3844–3846 (2004)

    Article  CAS  Google Scholar 

  4. V.V.S.S. Sai Sunder, A. Halliyal, A.M. Umarji, Investigation of tetragonal distortion in the PbTiO3–BiFeO3 system by high-temperature x-ray diffraction. J. Mater. Res. 10(5), 1301–1306 (1995)

    Article  Google Scholar 

  5. H. Amorín, C. Correas, C.M. Fernández-Posada et al., Multiferroism and enhancement of material properties across the morphotropic phase boundary of BiFeO3-PbTiO3. J. Appl. Phys. 115(10), 104104 (2014)

    Article  Google Scholar 

  6. J.R. Cheng, Z.Y. Meng, L.E. Cross, Piezoelectric performances of lead-reduced (1 – x)(Bi0.9La0.1)(Ga0.05Fe0.95)O3-x(Pb0.9Ba0.1)TiO3 crystalline solutions in the morphotropic phase boundary. J. Appl. Phys. 96(11), 6611–6615 (2004)

    Article  CAS  Google Scholar 

  7. J. Zhuang, Z.H. Tang, A.A. Bokov et al., Achieving large switchable polarization and enhanced piezoelectric response in BiFeO3-PbTiO3 solid solution ceramics. Adv. Electron. Mater. 8(2), 2100883 (2022)

    Article  CAS  Google Scholar 

  8. X.Y. He, T. Wang, X.D. Li et al., Enhanced piezoelectricity and excellent thermal stability in Sm3+-doped BiFeO3-PbTiO3 ceramics. ACS Appl. Electron. Mater. 4(2), 807–813 (2022)

    Article  CAS  Google Scholar 

  9. I. Sterianou, D.C. Sinclair, I.M. Reaney et al., Investigation of high Curie temperature (1 – x)BiSc1 – yFeyO3-xPbTiO3 piezoelectric ceramics. J. Appl. Phys. 106(8), 084107 (2009)

    Article  Google Scholar 

  10. Z.H. Ning, Y. Jiang, J.R. Cheng et al., Achieving both large piezoelectric constant and high Curie temperature in BiFeO3-PbTiO3-BaTiO3 solid solution. J. Eur. Ceram. Soc. 40(6), 2338–2344 (2020)

    Article  CAS  Google Scholar 

  11. Y.X. Chen, J. Jian, J.R. Cheng et al., High-temperature BiFeO3–PbTiO3-Ba(zr,Ti)O3 ternary ceramics with excellent piezoelectricity. J. Am. Ceram. Soc. 104(9), 4687–4694 (2021)

    Article  CAS  Google Scholar 

  12. R.Z. Zuo, H. Qi, A.W. Xie et al., Anomalously large lattice strain contributions from rhombohedral phases in BiFeO3-based high-temperature piezoceramics estimated by means of in-situ synchrotron x-ray diffraction. J. Eur. Ceram. Soc. 38(14), 4653–4658 (2018)

    Article  CAS  Google Scholar 

  13. W. Hu, X.L. Tan, K. Rajan, Piezoelectric ceramics with compositions at the morphotropic phase boundary in the BiFeO3–PbZrO3–PbTiO3 ternary system. J. Am. Ceram. Soc. 94(12), 4358–4363 (2011)

    Article  CAS  Google Scholar 

  14. J. Bennett, A.J. Bell, P. Mandal et al., Temperature dependence of the intrinsic and extrinsic contributions in BiFeO3-(K0.5Bi0.5)TiO3-PbTiO3 piezoelectric ceramics. J. Appl. Phys. 116(9), 094102 (2014)

    Article  Google Scholar 

  15. J. Jian, R. Peng, J.R. Cheng et al., Structure and enhanced electrical properties of high-temperature BiFeO3-PbTiO3-BaZrO3 ceramics with bismuth excess. Ceram. Int. 44(17), 21774–21778 (2018)

    Article  CAS  Google Scholar 

  16. R.H. Buttner, E.N. Maslen, Structural parameters and electron difference density in BaTiO3. Acta Crystallogr. Sect. B: Struct. Sci. Cryst. Eng. Mater. 48, 764–769 (1992)

    Article  Google Scholar 

  17. I. Grinberg, M.R. Suchomel, P.K. Davies et al., Predicting morphotropic phase boundary locations and transition temperatures in Pb- and bi-based perovskite solid solutions from crystal chemical data and first-principles calculations. J. Appl. Phys. 98(9), 094111 (2005)

    Article  Google Scholar 

  18. J.G. Chen, Y.F. Qi, J.R. Cheng et al., Diffused phase transition and multiferroic properties of 0.57(Bi1-xLax)FeO3–0.43PbTiO3 crystalline solutions. J. Appl. Phys. 104(6), 064124 (2008)

    Article  Google Scholar 

  19. Y. Chen, J. Fu, R.Z. Zuo, Electric field induced irreversible change and asymmetric butterfly strain loops in Pb(Zr, Ti)O3-Pb(Ni1/3Nb2/3)O3-Bi(Zn1/2Ti1/2)O3 quaternary ceramics. Ceram. Int. 44(7), 8514–8520 (2018)

    Article  CAS  Google Scholar 

  20. J.L. Lin, R.H. Liang, X.L. Dong et al., The evolution of structure and electrical properties for BiFeO3–PbTiO3–Ba(Zr0.3Ti0.7)O3 high-temperature piezoceramics near the morphotropic phase boundary. Ceram. Int. 47(17), 23984–23990 (2021)

    Article  CAS  Google Scholar 

  21. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A: Found. Adv. 32, 751–767 (1976)

    Article  Google Scholar 

  22. T. Kai, C.R. Zhou, Q.N. Li et al., Enhanced piezoelectric response and high-temperature sensitivity by site-selected doping of BiFeO3-BaTiO3 ceramics. J. Eur. Ceram. Soc. 38(4), 1356–1366 (2018)

    Article  Google Scholar 

  23. H. Qi, X.F. Zhou, R.Z. Zuo et al., Phase structure dependence of acceptor doping effects in (Bi0.5Na0.5)TiO3-BaTiO3 lead-free ceramics. J. Alloys Compd. 802(25), 6–12 (2019)

    Article  CAS  Google Scholar 

  24. L.L. Fan, J. Chen, S. Li et al., Enhanced piezoelectric and ferroelectric properties in the BaZrO3 substituted BiFeO3-PbTiO3. Appl. Phys. Lett. 102(2), 022905 (2013)

    Article  Google Scholar 

  25. B. Li, C.Y. li, T. Zheng et al., Property regulation principle in Mn-doped BF–BT ceramics: competitive control of domain switching by defect dipoles and domain configuration. Adv. Electron. Mater. 8(11), 2200609 (2022)

    Article  CAS  Google Scholar 

  26. Y. Zhuo, J.T. Zeng, G.R. Li et al., Effects of Ba(Zr0.25Ti0.75)O3 substituent on ferroelectric properties in the BiFeO3-PbTiO3 high temperature ceramics. Ceram. Int. 44, S65–S68 (2018)

    Article  Google Scholar 

  27. A.A. Bokov, Z.G. Ye, Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41, 31–52 (2006)

    Article  CAS  Google Scholar 

  28. D.G. Zheng, R.Z. Zuo, A novel BiFeO3–BaTiO3–BaZrO3 lead-free relaxor ferroelectric ceramic with low-hysteresis and frequency-insensitive large strains. J. Am. Ceram. Soc. 98(12), 3670–3672 (2015)

    Article  CAS  Google Scholar 

  29. D.S. Fu, H. Taniguchi, S. Koshihara et al., Relaxor Pb(Mg1/3Nb2/3)O3: a ferroelectric with multiple inhomogeneities. Phys. Rev. Lett. 103, 207601 (2009)

    Article  Google Scholar 

  30. R. Pandey, B. Narayan, I.M. Reaney et al., High electromechanical response in the non morphotropic phase boundary piezoelectric system PbTiO3-Bi(Zr1/2Ni1/2)O3. Phys. Rev. B 97, 224109 (2018)

    Article  CAS  Google Scholar 

  31. J.G. Chen, J.Y. Lin, J.R. Cheng et al., Enhanced piezoelectric properties and reduced high temperature dielectric loss of BF-PT-BT ceramics by Mn additions. Available at SSRN (2022). https://doi.org/10.2139/ssrn.4224191

    Article  Google Scholar 

  32. Y.J. Shi, X.Y. Dong, K.Y. Zhao et al., Potential high-temperature piezoelectric ceramics with remarkable performances enhanced by the second-order Jahn–Teller effect. ACS Appl. Mater. Interfaces 13(12), 14385–14393 (2021)

    Article  CAS  Google Scholar 

  33. Z. Yu, J.T. Zeng, G.R. Li et al., Large piezoelectricity and high Curie temperature in novel bismuth ferrite-based ferroelectric ceramics. J. Am. Ceram. Soc. 103(11), 6435–6444 (2020)

    Article  CAS  Google Scholar 

  34. S.J. Zhang, F.P. Yu, Piezoelectric materials for high temperature sensors. J. Am. Ceram. Soc. 94(10), 3153–3170 (2011)

    Article  CAS  Google Scholar 

  35. U. Shankar, N. Kumar, R. Ranjan et al., Large electromechanical response in ferroelectrics: beyond the morphotropic phase boundary paradigm. Phys. Rev. B 100, 094101 (2019)

    Article  CAS  Google Scholar 

  36. F. Luo, Z.M. Li, Y. Hao et al., High piezoelectric properties in 0.7BiFeO3–0.3BaTiO3 ceramics with MnO and MnO2 addition. J. Eur. Ceram. Soc. 42(3), 954–964 (2021)

    Article  Google Scholar 

  37. M. Habib, M.J. Iqbal, T.K. Song et al., Piezoelectric performance of Zr-modified lead-free BiFeO3-BaTiO3 ceramics. Mater. Res. Bull. 146, 111571 (2022)

    Article  CAS  Google Scholar 

  38. Q. Zhang, Z.R. Li, X. Yao et al., Temperature dependence of dielectric/piezoelectric properties of (1 – x)Bi(Mg1/2Ti1/2)O3–xPbTiO3 ceramics with an MPB composition. J. Am. Ceram. Soc. 93(10), 3330–3334 (2010)

    Article  CAS  Google Scholar 

  39. L.L. Fan, J. Chen, X.R. Xing et al., High piezoelectric performance and temperature dependence of ferroelectric and piezoelectric properties of Bi(Mg0.5Zr0.5)O3–PbTiO3 near morphotropic phase boundary. Ceram. Int. 40(6), 7723–7728 (2014)

    Article  CAS  Google Scholar 

  40. B. Gao, Z.H. Yao, H.X. Liu et al., Unexpectedly high piezoelectric response in Sm-doped PZT ceramics beyond the morphotropic phase boundary region. J. Alloys Compd. 836, 155474 (2020)

    Article  CAS  Google Scholar 

  41. T. Sebastian, A.J. Bell, I.M. Reaney et al., High temperature piezoelectric ceramics in the Bi(Mg0.5Ti0.5)O3-BiFeO3-BiScO3-PbTiO3 system. J. Electroceram. 25, 130–134 (2010)

    Article  CAS  Google Scholar 

  42. L. Yang, C. Chen, X.P. Jiang et al., Enhanced ferroelectric and piezoelectric properties of BiFeO3–BaTiO3 lead-free ceramics by simultaneous optimization of Bi compensation and sintering conditions. Ceram. Int. 48(9), 12866–12874 (2022)

    Article  CAS  Google Scholar 

  43. B.W. Xun, A.Z. Song, J.R. Yu et al., Lead-free BiFeO3-BaTiO3 ceramics with high Curie temperature: fine compositional tuning across the phase boundary for high piezoelectric charge and strain coefficients. ACS Appl. Mater. Interfaces 13(3), 4192–4202 (2021)

    Article  CAS  Google Scholar 

  44. H. Liu, J. Chen, H.B. Huang et al., Role of reversible phase transformation for strong piezoelectric performance at the morphotropic phase boundary. Phys. Rev. Lett. 120(5), 055501 (2018)

    Article  CAS  Google Scholar 

  45. S.D. Sun, Y. liu, Y.Y. Zhang et al., Superior high-temperature piezoelectric performances in BF-PT-BT ceramics via electric field constructed phase boundary. Acta Mater. 239, 118285 (2022)

    Article  CAS  Google Scholar 

  46. H. Liu, J. Chen, L.L. Fan et al., Critical role of monoclinic polarization rotation in high-performance perovskite piezoelectric materials. Phys. Rev. Lett. 119(1), 017601 (2017)

    Article  Google Scholar 

  47. Y.U. Wang, Field-induced inter-ferroelectric phase transformations and domain mechanisms in high-strain piezoelectric materials: insights from phase field modeling and simulation. J. Mater. Sci. 44(19), 5225–5234 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants Nos. 52072103, U19A2087), Key R&D projects of the Ministry of Science and Technology (2022YFB3807403), Natural Science Foundation of Anhui Province (Grant No. 2208085ME107), and the AHPU innovation team project (S022021058).

Funding

This study was supported by  National Natural Science Foundation of China (Grant Nos. 52072103, U19A2087),  Key R&D projects of the Ministry of Science and Technology (Grant Number 2022YFB3807403),  Natural Science Foundation of Anhui Province (Grant Number 2208085ME107),  the AHPU innovation team project (Grant Number S022021058).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Materials preparation and data collection were analyzed by MHG and ZDY. The first draft was written by MHG, and all authors co-authored previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jian Fu or Ruzhong Zuo.

Ethics declarations

Competing interests

Authors declare they have no financial interests.

Ethical approval

Yes this article compliance with ethical standards of journal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, M., Yu, Z., Fu, J. et al. Enhanced piezoelectricity and excellent thermal stability in modified BiFeO3–PbTiO3-based high-temperature piezoelectric ceramics. J Mater Sci: Mater Electron 34, 1085 (2023). https://doi.org/10.1007/s10854-023-10495-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10495-7

Navigation