Skip to main content

Advertisement

Log in

Enhanced thermoelectric performance of mechanically hard nano-crystalline-sputtered SnSe thin film compared to the bulk of SnSe

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thermoelectric thin-film architecture has the advantage over bulk by reducing further the thermal conductivity and increasing the figure of merit. The present work demonstrates the structural requirement to enhance the figure of merit and hardness of a SnSe thin film over bulk. The SnSe thin films were deposited over the glass substrate at different substrate temperatures (Ts) using the magnetron-sputtering technique. The bulk and the deposited films of SnSe were characterized by XRD, SEM, EDS, Raman spectroscopy, HRTEM, Nano-indentation, and thermoelectric properties (Seebeck coefficient, electrical, and thermal conductivities) measurement techniques. The structural, compositional, thermoelectrical, and mechanical analyses of films were used to establish the structure–property relationship for SnSe. The microstructure of the SnSe films was significantly affected by Ts. The well-evolved single-phase polycrystalline structure of the SnSe films was observed at high Ts (≥ 400 °C). The planar orientations overlapping induced dislocations were observed at high Ts. The maximum ZT (0.83), power factor (~ 2.43 µWcm−1 K−2), and hardness (7.1 GPa) values were obtained for the SnSe film deposited at Ts = 500 °C. The structural modifications of SnSe thin film at high temperatures implemented by nano-crystallization, preferred orientation (111), grain boundaries, and competitive growth-induced dislocations were responsible for enhancing the figure of merit and hardness compared to bulk SnSe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Z. Hu, Z. Wu, Nanostructured Thermoelectric Films (Springer Singapore, Singapore, 2020)

    Book  Google Scholar 

  2. Dashboard - Central Electricity Authority, https://cea.nic.in/dashboard/?lang=en. Accessed 2 Sept 2022

  3. P. Mele, D. Narducci, M. Ohta, K. Biswas, J. Morante, S. Saini, T. Endo (eds.), Thermoelectric Thin Films (Springer International Publishing, Cham, 2019)

    Google Scholar 

  4. K. Bin Masood, P. Kumar, R.A. Singh, J. Singh, J. Phys. Commun. 2, 062001 (2018)

    Article  Google Scholar 

  5. X.F. Zheng, C.X. Liu, Y.Y. Yan, Q. Wang, Renew. Sustain. Energy Rev. 32, 486 (2014)

    Article  CAS  Google Scholar 

  6. G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105 (2008)

    Article  CAS  Google Scholar 

  7. M. Parenteau, C. Carlone, Phys. Rev. B 41, 5227 (1990)

    Article  CAS  Google Scholar 

  8. L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Nature 508, 373 (2014)

    Article  CAS  Google Scholar 

  9. H. Wiedemeier, H.G. von Schnering, Z. Für Krist 148, 295 (1978)

    Article  CAS  Google Scholar 

  10. Y. Zhang, S. Hao, L.-D. Zhao, C. Wolverton, Z. Zeng, J. Mater. Chem. A 4, 12073 (2016)

    Article  CAS  Google Scholar 

  11. A. Mehdizadeh Dehkordi, M. Zebarjadi, J. He, T.M. Tritt, Mater. Sci. Eng. R Reports 97, 1 (2015)

    Article  Google Scholar 

  12. Y. Li, F. Li, J. Dong, Z. Ge, F. Kang, J. He, H. Du, B. Li, J.-F. Li, J. Mater. Chem. C 4, 2047 (2016)

    Article  CAS  Google Scholar 

  13. R. Xu, L. Huang, J. Zhang, D. Li, J. Liu, J. Liu, J. Fang, M. Wang, G. Tang, J. Mater. Chem. A 7, 15757 (2019)

    Article  CAS  Google Scholar 

  14. J. Gainza, S. Moltó, F. Serrano-Sánchez, O.J. Dura, M.T. Fernández-Díaz, N. Biškup, J.L. Martínez, J.A. Alonso, N.M. Nemes, J. Mater. Sci. 57, 8489 (2022)

    Article  CAS  Google Scholar 

  15. L.-D. Zhao, C. Chang, G. Tan, M.G. Kanatzidis, Energy Environ. Sci. 9, 3044 (2016)

    Article  CAS  Google Scholar 

  16. H. Zhang, D.V. Talapin, Angew. Chemie Int. Ed 53, 9126 (2014)

    Article  CAS  Google Scholar 

  17. G. Hema Chandra, O. Lakshmana Kumar, R. Prasada Rao, S. Uthanna, J. Mater. Sci. 46, 6952 (2011)

    Article  CAS  Google Scholar 

  18. J. Wei, L. Yang, Z. Ma, P. Song, M. Zhang, J. Ma, F. Yang, X. Wang, J. Mater. Sci. 55, 12642 (2020)

    Article  CAS  Google Scholar 

  19. X. Wang, J. Xu, G. Liu, Y. Fu, Z. Liu, X. Tan, H. Shao, H. Jiang, T. Tan, J. Jiang, Appl. Phys. Lett. 108, 083902 (2016)

    Article  Google Scholar 

  20. V. Kucek, T. Plechacek, P. Janicek, P. Ruleova, L. Benes, J. Navratil, C. Drasar, J. Electron. Mater. 45, 2943 (2016)

    Article  CAS  Google Scholar 

  21. N.K. Singh, S. Bathula, B. Gahtori, K. Tyagi, D. Haranath, A. Dhar, J. Alloys Compd. 668, 152 (2016)

    Article  CAS  Google Scholar 

  22. D. Feng, Z.-H. Ge, D. Wu, Y.-X. Chen, T. Wu, J. Li, J. He, Phys. Chem. Chem. Phys. 18, 31821 (2016)

    Article  CAS  Google Scholar 

  23. C.H. Suen, D. Shi, Y. Su, Z. Zhang, C.H. Chan, X. Tang, Y. Li, K.H. Lam, X. Chen, B.L. Huang, X.Y. Zhou, J.-Y. Dai, J. Mater. 3, 293 (2017)

    Google Scholar 

  24. L. Song, J. Zhang, B.B. Iversen, J. Mater. Chem. A 7, 17981 (2019)

    Article  CAS  Google Scholar 

  25. K. Singh, S. Soni, P. Anwar, Dubey, S.K. Mishra, Mater. Today Commun. 32, 103880 (2022)

    Article  CAS  Google Scholar 

  26. D. Rozgic, D. Markovic, IEEE Trans. Biomed. Circuits Syst. 11, 773 (2017)

    Article  Google Scholar 

  27. F. Qiu, W. Shin, M. Matsumiya, N. Izu, I. Matsubara, N. Murayama, Sensors Actuators B Chem. 103, 252–259 (2004)

    Article  CAS  Google Scholar 

  28. L. Francioso, C. De Pascali, I. Farella, C. Martucci, P. Cret, P. Siciliano, A. Perrone, J. Power Sources 196, 3239 (2011)

    Article  CAS  Google Scholar 

  29. P. Baláž, M. Baláž, M. Achimovičová, Z. Bujňáková, E. Dutková, J. Mater. Sci. 52, 11851 (2017)

    Article  Google Scholar 

  30. T. Zhan, R. Yamato, S. Hashimoto, M. Tomita, S. Oba, Y. Himeda, K. Mesaki, H. Takezawa, R. Yokogawa, Y. Xu, T. Matsukawa, A. Ogura, Y. Kamakura, T. Watanabe, Sci. Technol. Adv. Mater. 19, 443 (2018)

    Article  CAS  Google Scholar 

  31. J.P. Fleurial, G.J. Snyder, J.A. Herman, P.H. Giauque, W.M. Phillips, M.A. Ryan, P. Shakkottai, E.A. Kolawa, M.A. Nicolet, Int. Conf. Thermoelectr. ICT, Proc. 294 (1999)

  32. M. Dargusch, W. Di Liu, Z.G. Chen, Adv. Sci. 7, 2001362 (2020)

    Article  CAS  Google Scholar 

  33. T. Inoue, H. Hiramatsu, H. Hosono, T. Kamiya, J. Appl. Phys. 118, 205302 (2015)

    Article  Google Scholar 

  34. K.-M. Chung, D. Wamwangi, M. Woda, M. Wuttig, W. Bensch, J. Appl. Phys. 103, 083523 (2008)

    Article  Google Scholar 

  35. V.R. Minnam Reddy, S. Gedi, C. Park, M. R.w, and R.R. Ramakrishna, Curr. Appl. Phys. 15, 588 (2015)

    Article  Google Scholar 

  36. K.A. Campbell, C.M. Anderson, Microelectron. J 38, 52 (2007)

    Article  CAS  Google Scholar 

  37. C. Guillén, J. Montero, J. Herrero, Phys. Status Solidi Appl. Mater. Sci. 208, 679 (2011)

    Article  Google Scholar 

  38. G. Jeong, Y.H. Jaung, J. Kim, J.Y. Song, B. Shin, J. Mater. Chem. C 6, 10083 (2018)

    Article  CAS  Google Scholar 

  39. K.S. Urmila, T.A. Namitha, J. Rajani, R.R. Philip, B. Pradeep, J. Semicond. 37, 093002 (2016)

    Article  Google Scholar 

  40. M.R. Burton, T. Liu, J. McGettrick, S. Mehraban, J. Baker, A. Pockett, T. Watson, O. Fenwick, M.J. Carnie, Adv. Mater. 30, 1801357 (2018)

    Article  Google Scholar 

  41. H.-C. Chen, D.-J. Jan, B.-C. Lin, T.-H. Hsueh, Mater. Res. Bull. 140, 111313 (2021)

    Article  CAS  Google Scholar 

  42. B. Duployer, C. Tenailleau, Y. Thimont, P. Lenormand, A. Barnabé, L. Presmanes, Mater. Res. Bull. 130, 110940 (2020)

    Article  CAS  Google Scholar 

  43. S. Lin, J. Zhang, R. Zhu, S. Fu, D. Yun, Mater. Res. Bull. 105, 231 (2018)

    Article  CAS  Google Scholar 

  44. J.M. Lin, Y.C. Chen, C.F. Yang, W. Chen, J. Nanomater. 2015, 1 (2015)

    Google Scholar 

  45. Y. Feng, X. Zhang, L. Lei, Y. Nie, G. Xiang, RSC Adv. 10, 11990 (2020)

    Article  CAS  Google Scholar 

  46. D.M.M. Mattox, HANDBOOK OF PHYSICAL VAPOR DEPOSITION (PVD) PROCESSING Film Formation, Adhesion, Surface Preparation and Contamination Control (1998)

  47. Z. Li, Y. Guo, F. Zhao, C. Nie, H. Li, J. Shi, X. Liu, J. Jiang, S. Zuo, RSC Adv. 10, 16749 (2020)

    Article  CAS  Google Scholar 

  48. P. Fan, Y.Z. Li, Z.H. Zheng, Q.Y. Lin, J.T. Luo, G.X. Liang, M.Q. Zhang, M.C. Chen, Appl. Surf. Sci. 284, 145 (2013)

    Article  CAS  Google Scholar 

  49. Z.-G. Chen, X. Shi, L.-D. Zhao, J. Zou, Prog Mater. Sci. 97, 283 (2018)

    Article  CAS  Google Scholar 

  50. D.M. Rowe, CRC Handbook of Thermoelectrics, 1st edn. (CRC Press, Boca Raton, 1995)

    Google Scholar 

  51. A. Yadav, P. Deshmukh, K. Roberts, N. Jisrawi, S. Valluri, J. Phys. Commun. 3, 105001 (2019)

    Article  CAS  Google Scholar 

  52. Y. Zhang, X. Jia, H. Sun, B. Sun, B. Liu, H. Liu, L. Kong, H. Ma, J. Mater. 2, 316 (2016)

    Google Scholar 

  53. Y. Lan, A.J. Minnich, G. Chen, Z. Ren, Adv. Funct. Mater. 20, 357 (2010)

    Article  CAS  Google Scholar 

  54. H. Cho, S.Y. Back, J.H. Yun, S. Byeon, H. Jin, J.-S. Rhyee, ACS Appl. Mater. Interfaces 12, 38076 (2020)

    Article  CAS  Google Scholar 

  55. B. Madavali, H.-S. Kim, K.-H. Lee, S.-J. Hong, Intermetallics 82, 68 (2017)

    Article  CAS  Google Scholar 

  56. A. Pakdel, Q. Guo, V. Nicolosi, T. Mori, J. Mater. Chem. A 6, 21341 (2018)

    Article  CAS  Google Scholar 

  57. S. Ma, C. Li, P. Wei, W. Zhu, X. Nie, X. Sang, Q. Zhang, W. Zhao, J. Mater. Chem. A 8, 4816 (2020)

    Article  CAS  Google Scholar 

  58. C. Li, S. Ma, P. Wei, W. Zhu, X. Nie, X. Sang, Z. Sun, Q. Zhang, W. Zhao, Energy Environ. Sci. 13, 535 (2020)

    Article  Google Scholar 

  59. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Z. Ren, Science 320, 634 (2008)

    Article  CAS  Google Scholar 

  60. Y. Pei, N.A. Heinz, G.J. Snyder, J. Mater. Chem. 21, 18256 (2011)

    Article  CAS  Google Scholar 

  61. Y.Z. Pei, J. Yang, L.D. Chen, W. Zhang, J.R. Salvador, J. Yang, Appl. Phys. Lett. 95, 042101 (2009)

    Article  Google Scholar 

  62. Y. Duck, T. Chung, J. Hogan, L. Schindler, P. Iordarridis, C.R. Brazis, B. Kannewurf, C. Chen, Uher, M.G. Kanatzidis, in XVI ICT ’97. Proceedings ICT’97 16th International Conference Thermoelectrics (Cat. No.97TH8291) (IEEE, 2022), pp. 459–462

  63. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Science 321, 80-. (2008) 554

    Article  Google Scholar 

  64. A.U. Khan, N. Vlachos, T. Kyratsi, Scr. Mater. 69, 606 (2013)

    Article  CAS  Google Scholar 

  65. G. Ding, G. Gao, K. Yao, Sci. Rep. 5, 9567 (2015)

    Article  CAS  Google Scholar 

  66. Y. Li, G. Wang, M. Akbari-Saatlu, M. Procek, H.H. Radamson, Front. Mater. 8, 1 (2021)

    Google Scholar 

Download references

Acknowledgements

One of the authors, Komal Singh, acknowledges the Council of Scientific and Industrial Research (CSIR), New Delhi, for providing a CSIR-Senior Research Fellowship and grant to carry out this work.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

KS: Conceptualization, Methodology, Formal analysis, Data curation, Writing—original draft, Writing—review & editing. SA: Thermoelectric property measurement. PD: Project administration, Data curation, Supervision, Writing—review & editing. SKM: Supervision, Data curation, Writing—review & editing.

Corresponding author

Correspondence to Paritosh Dubey.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, K., Anwar, S., Dubey, P. et al. Enhanced thermoelectric performance of mechanically hard nano-crystalline-sputtered SnSe thin film compared to the bulk of SnSe. J Mater Sci: Mater Electron 34, 1115 (2023). https://doi.org/10.1007/s10854-023-10487-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10487-7

Navigation