Skip to main content
Log in

Judd–Ofelt analysis and waveguide fabrication of Dy:LPS

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the three spectroscopic parameters of the Dy:LPS were calculated as follows: 2.0902 × 10−20 cm2, 0.2469 × 10−20 cm2, and 0.4597 × 10−20 cm2, according to the Judd–Ofelt theory. Then, a planar waveguide was fabricated on the Dy:LPS by the proton implantation with an energy of 400 keV and a dose of 8 × 1016 ions/cm2. The dark-mode spectrum was obtained by the prism coupling method. Correspondingly, the refractive index profile of the waveguide structure was reconstructed by the RCM. The mode profile of the waveguide was investigated by the end-face coupling technique. The results suggest that the Dy:LPS crystal and its waveguide structure have potential applications in integrated optics, especially in the fabrication of solid-state waveguide lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M. Pollnau, Rare-earth-ion-doped channel waveguide. IEEE J. Sel. Top. Quant. 21(1), 1602512 (2015)

    Article  Google Scholar 

  2. Y. Zhang, J. Xu, B. Lu, Spectroscopic properties of Dy3+:Bi4Si3O12 single crystal. J. Alloys Compd. 582(1), 635–639 (2014)

    Article  CAS  Google Scholar 

  3. M.R. Majewski, S.D. Jackson, Highly efficient mid-infrared dysprosium fiber laser. Opt. Lett. 41(10), 2173 (2016)

    Article  CAS  Google Scholar 

  4. H.Y. Zhao, S.J. Jia, X. Wang, R.C. Wang, X.S. Lu, Y.X. Fan, M. Tokurakawa, G. Brambilla, S.B. Wang, P.F. Wang, Investigation of Dy3+/Tm3+ co-doped ZrF4–BaF2–YF3–AlF3 fluoride glass for efficient 2.9 µm mid-infrared laser applications. J. Alloys Compd. 817, 152754 (2019)

    Article  Google Scholar 

  5. R. Stanley, S.D. Jackson, Y. Yao, Mid-infrared photonics. Nat. Photon. 6(1), 407–498 (2012)

    Google Scholar 

  6. J.H. Huang, Y.J. Chen, J.H. Huang, X.H. Gong, Y.F. Lin, Z.D. Luo, Y.D. Huang, Spectroscopic investigation of Dy3+:Lu2Si2O7 single crystal: a potential 589 nm laser medium. Opt. Mater. 72, 156–160 (2017)

    Article  CAS  Google Scholar 

  7. M. Nikl, G.H. Ren, D.Z. Ding, E. Mihokova, V. Jary, H. Feng, Luminescence and scintillation kinetics of the Pr3+ doped Lu2Si2O7 single crystal. Chem. Phys. Lett. 493(1–3), 72–75 (2010)

    Article  CAS  Google Scholar 

  8. C.W. Xu, D.Y. Tang, X.D. Xu, L.H. Zheng, J. Zhang, W.W. Tan, D.Z. Li, L.B. Su, J. Xu, Diode-pumped femtosecond passively mode-locked Yb:LPS laser. Laser Phys. Lett. 9(10), 726–729 (2012)

    Article  CAS  Google Scholar 

  9. J.H. Huang, Y.J. Chen, Y.F. Lin, X.H. Gong, Z.D. Luo, Y.D. Huang, Efficient 1620 nm continuous-wave laser operation of Czochralski grown Er:Yb:Lu2Si2O7 crystal. Opt. Express. 25(20), 24001 (2017)

    Article  CAS  Google Scholar 

  10. C. Grivas, Optically pumped planar waveguide lasers, part I: fundamentals and fabrication techniques. Progr. Quant. Electron. 35(6), 159–239 (2011)

    Article  Google Scholar 

  11. J.I. Mackenzie, Dielectric solid-state planar waveguide lasers: a review. IEEE J. Sel. Top. Quant. 13(3), 626–637 (2017)

    Article  Google Scholar 

  12. F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications”. Laser Photonics Rev 6(5), 622–640 (2012)

    Article  Google Scholar 

  13. J.H. Wu, M.L. Wei, J.L. Mu, H. Ma, C.Y. Zhong, Y.T. Ye, C.L. Sun, B. Tang, L.C. Wang, J.Y. Li, X.M. Xu, B.L. Liu, H.T. Lin, “High-performance waveguide-integrated Bi2O2Se photodetector for Si photonic integrated circuits”. ACS Nano 15(10), 15982–15991 (2021)

    Article  CAS  Google Scholar 

  14. J. Zhang, J.Y. Chen, Y. Lu, Y.S. Wang, L.L. Zhang, Q.Y. Yue, R.L. Zheng, C.X. Liu, Optical planar and ridge waveguides in terbium scandium aluminum garnet crystal fabricated by ion implantation and precise diamond blade dicing. Vacuum 193, 110493 (2021)

    Article  CAS  Google Scholar 

  15. Z.A. Ansari, R.N. Karekar, R.C. Aiyer, Planar optical waveguide with PbCl2 cladding: a chlorine sensor. J. Mater. Sci. 7(4), 255–259 (1996)

    CAS  Google Scholar 

  16. A. Tervonen, B.R. West, S. Honkanen, Ion-exchanged glass waveguide technology: a review. Opt. Eng. 50(7), 071107 (2011)

    Article  Google Scholar 

  17. M. Qiao, T.J. Wang, H.L. Song, J. Zhang, Y. Liu, P. Liu, H.J. Zhang, X.L. Wang, “The lattice structure and optical properties of neodymium-doped gadolinium vanadate crystals induced by ion irradiation”. IEEE Photonics J 9(3), 6101010 (2017)

    Article  Google Scholar 

  18. C.X. Liu, J.L. You, S.Q. Lin, J.Y. Chen, M. Tang, S.B. Lin, R.L. Zheng, L.L. Fu, L.L. Zhang, “A ridge waveguide constructed by H+ implantation and precise diamond blade dicing in high-gain Nd3+-doped laser glass”. Optik 225, 165881 (2020)

    Article  Google Scholar 

  19. X.J. Cui, L.L. Wang, H.K. Zhang, T. Chen, KTiOPO4 double barrier optical waveguides produced by Rb+–K+ ion exchange and subsequent He+-ion irradiation. Opt. Eng. 55(3), 036107 (2016)

    Article  Google Scholar 

  20. Y.C. Jia, C.E. Rüter, S. Akhmadaliev, S.Q. Zhou, F. Chen, D. Kip, Ridge waveguide lasers in Nd:YAG crystals produced by combining swift heavy ion irradiation and precise diamond blade dicing. Opt. Mater. Express. 3, 433–438 (2013)

    Article  CAS  Google Scholar 

  21. J.F. Ziegler, SRIM-the stopping and range of ions in matter. http://www.srim.org

  22. M.R. Majewski, R.I. Woodward, S.D. Jackson, Dysprosium mid-infrared lasers: current status and future prospects. Laser Photon. Rev. 14(3), 1900195 (2020)

    Article  CAS  Google Scholar 

  23. W.T. Carnall, P.R. Fields, K. Rajnak, Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J. Chem. Phys. 49(10), 4424–4442 (1968)

    Article  CAS  Google Scholar 

  24. C.X. Liu, X.L. Shen, R.L. Zheng, H.T. Guo, W.N. Li, W. Wei, Visible and near-infrared waveguides formed by double-energy proton implantation in magneto-optical glasses. Appl. Phys. B 123(2), 56 (2017)

    Article  Google Scholar 

  25. Rsoft Design Group, Computer software BeamPROP version 8.0. http://www.rsoftdesign.com

Download references

Acknowledgements

The authors acknowledge the support from the Postgraduate Research and Innovation Program of Jiangsu Province (Grant No KYCX21_0702), the National Natural Science Foundation of China (Grant No. 11405041), and the Scientific Research Foundation for Youths Supported by Jiangxi Province Science Foundation (Grant No. 20192BAB217015).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

HP participated in the writing, reviewing, and editing of the manuscript. W-HS contributed to investigation. Z-XZ contributed to formal analysis. L-LZ contributed to validation. C-XL contributed to data curation, writing of the original draft, and funding acquisition.

Corresponding author

Correspondence to Chun-Xiao Liu.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Ethical approval

It has not been published previously and is not under consideration for publication elsewhere, in whole or in part. All the authors listed have approved the manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, H., Shi, WH., Zhang, ZX. et al. Judd–Ofelt analysis and waveguide fabrication of Dy:LPS. J Mater Sci: Mater Electron 34, 1091 (2023). https://doi.org/10.1007/s10854-023-10486-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10486-8

Navigation