Skip to main content

Advertisement

Log in

Dielectric and energy storage properties of Ba0.85Ca0.15Zr0.1Ti0.90O3 ceramics with BaO–Na2O–Nb2O5–WO3–P2O5 glass addition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead-free Ba0.85Ca0.15Zr0.10Ti0.90O3 (BCZT) ceramic with different BaO–Na2O–Nb2O5–WO3–P2O5 (BNNWP) glass contents, forming (1–x)BCZT–xBNNWP lead-free ceramics (abbreviated as BCZTx; x = 0, 2, 4, 6, and 8wt%) were synthesized using the conventional solid-state processing route. The XRD investigation shows the coexistence of tetragonal and orthorhombic phases in BCZT pure. Likewise, only the tetragonal phase was detected in BCZTx (x = 2–8 wt%) ceramics. The SEM findings indicate that the average grain size decreases as the amount of BNNWP glass additives increases. In addition, BCZT ceramics modified with glass additions showed narrower hysteresis loops and a large electric field. The BCZT4 showed the highest recovered energy density of 0.52 J/cm3 at 135 kV/cm with an energy storage efficiency of 62.4%, which is increased by 6.6 compared to BCZT0 (0.075 J/cm3). The energy density was also calculated using the Landau–Ginzburg–Devonshire (LGD) theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Z. Yao, Z. Song, H. Hao, Z. Yu, M. Cao, S. Zhang, M.T. Lanagan, H. Liu, Adv. Mater. (2017). https://doi.org/10.1002/adma.201601727

    Article  Google Scholar 

  2. H. Yang, F. Yan, F. Wang, G. Zhang, Y. Lin, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.05.158

    Article  Google Scholar 

  3. J. Liu, J. Zhai, K. Yang, B. Shen, S. Wang, J. Tian, Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2018.02.054

    Article  Google Scholar 

  4. X. Chen, Y. Tang, X. Bo, J. Song, J. Luo, J. Mater. Sci. Mater. Electron. (2018). https://doi.org/10.1007/s10854-018-9858-6

    Article  Google Scholar 

  5. Z. Yang, H. Du, S. Qu, Y. Hou, H. Ma, J. Wang, J. Wang, X. Wei, Z. Xu, J. Mater. Chem. A (2016). https://doi.org/10.1039/c6ta04107h

    Article  Google Scholar 

  6. D. Li, X. Zeng, Z. Li, Z.Y. Shen, H. Hao, W. Luo, X. Wang, F. Song, Z. Wang, Y. Li, J. Adv. Ceram. (2021). https://doi.org/10.1007/s40145-021-0500-3

    Article  Google Scholar 

  7. X. Hao, J. Adv. Dielectr. (2013). https://doi.org/10.1039/c6ta04107h10.1142/s2010135x13300016

    Article  Google Scholar 

  8. M. Zhang, H. Yang, Y. Lin, Q. Yuan, H. Du, Energy Storage Mater. (2022). https://doi.org/10.1016/j.ensm.2021.12.037

    Article  Google Scholar 

  9. H. Yang, F. Yan, Y. Lin, T. Wang, J. Eur. Ceram. Soc. (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.11.058

    Article  Google Scholar 

  10. S. Merselmiz, Z. Hanani, D. Mezzane, M. Spreitzer, A. Bradeško, D. Fabijan, D. Vengust, M. Amjoud, L. Hajji, Z. Abkhar, A.G. Razumnaya, B. Rožič, I.A. Luk’yanchuk, Z. Kutnjak, Ceram Int Ceram Int (2020). https://doi.org/10.1016/j.ceramint.2020.06.16

    Article  Google Scholar 

  11. Z. Hanani, S. Merselmiz, D. Mezzane, A. Bradeško, B. Rožič, M. Lahcini, M. El Marssi, A.V. Ragulya, I.A. Luk’Yanchuk, Z. Kutnjak, M. Gouné, RSC Adv (2020). https://doi.org/10.1039/d0ra06116f

    Article  Google Scholar 

  12. S.S. Merselmiz, Z. Hanani, U. Prah, D. Mezzane, L. Hajji, Z. Abkhar, M. Spreitzer, D. Vengust, H. Uršič, D. Fabijan, A. Razumnaya, O.G. Shapovalova, I.A. Luk’yanchuk, Z. Kutnjak, Phys. Chem. Chem. Phys. (2022). https://doi.org/10.1039/D1CP04723J

    Article  Google Scholar 

  13. Y. Lin, D. Li, M. Zhang, S. Zhan, Y. Yang, H. Yang, Q. Yuan, A.C.S. Appl, Mater. Interfaces. (2019). https://doi.org/10.1021/acsami.9b10819

    Article  Google Scholar 

  14. Z. Hanani, D. Mezzane, M. Amjoud, S. Fourcade, A.G. Razumnaya, I.A. Luk’yanchuk, M. Gouné, Superlattices Microstruct. (2019). https://doi.org/10.1016/j.spmi.2018.03.004

    Article  Google Scholar 

  15. H. Kaddoussi, A. Lahmar, Y. Gagou, B. Manoun, J.N. Chotard, J.-L. Dellis, Z. Kutnjak, H. Khemakhem, B. Elouadi, M. El Marssi, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.04.148

    Article  Google Scholar 

  16. S. Merselmiz, Z. Hanani, D. Mezzane, A.G. Razumnaya, M. Amjoud, L. Hajji, S. Terenchuk, B. Roˇziˇc, I.A. Luk’yanchukc, Z. Kutnjak, RSC Adv (2021). https://doi.org/10.1039/d0ra09707a

    Article  Google Scholar 

  17. Z. Dai, J. Xie, Z. Chen, S. Zhou, J. Liu, W. Liu, Z. Xi, X. Ren, Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.128341

    Article  Google Scholar 

  18. W.S.M. Maraj, W. Wei, B. Peng, Materials (Basel). (2019). https://doi.org/10.3390/ma12213641

    Article  Google Scholar 

  19. Y. Lin, Y. Zhang, S. Zhan, C. Sun, G. Hu, H. Yang, Q. Yuan, J. Mater. Chem. A. (2020). https://doi.org/10.1039/D0TA07937E

    Article  Google Scholar 

  20. T. Wu, Y. Pu, T. Zong, P. Gao, J. Alloys Compd. (2014). https://doi.org/10.1016/j.jallcom.2013.09.072

    Article  Google Scholar 

  21. Z. Luo, L. Han, A. Lu, J. Song, Q. Feng, T. Liu, J. Mater. Sci. Mater. Electron. (2018). https://doi.org/10.1007/s10854-018-8566-6

    Article  Google Scholar 

  22. X.W. Wang, B.H. Zhang, Y.C. Shi, Y.Y. Li, M. Manikandan, S.Y. Shang, J. Shang, Y.C. Hu, S.Q. Yin, J. Appl. Phys. (2020). https://doi.org/10.1063/1.5138948

    Article  Google Scholar 

  23. V.S. Puli, A. Kumar, R.S. Katiyar, X. Su, C.M. Busta, D.B. Chrisey, M. Tomozawa, J. Non. Cryst. Solids. (2012). https://doi.org/10.1016/j.jnoncrysol.2012.05.018

    Article  Google Scholar 

  24. A. Ihyadn, D. Mezzane, M. Amjoud, A. Lahmar, L. Bih, A. Alimoussa, I.A. Luk’Yanchuk, M. El Marssi, Today Proc (2022). https://doi.org/10.1016/j.matpr.2021.03.570

    Article  Google Scholar 

  25. E. Haily, L. Bih et al., Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2019.122434

    Article  Google Scholar 

  26. A. Ihyadn et al., Mater Res Express (2019). https://doi.org/10.1088/2053-1591/ab4569

    Article  Google Scholar 

  27. Y. Yao, C. Zhou, D. Lv, D. Wang, H. Wu, Y. Yang, X. Ren, EPL (2012). https://doi.org/10.1209/0295-5075/98/27008

    Article  Google Scholar 

  28. Z. Hanani, E.-H. Ablouh, M. Amjoud, D. Mezzane, M. Gouné, S. Fourcade, Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2018.03.022

    Article  Google Scholar 

  29. L.Z. Wang, W.Q. Luo, Z.M. Wang, Y.M. Li, Mater Electron J Mater Sci (2017). https://doi.org/10.1007/s10854-017-8010-3

    Article  Google Scholar 

  30. W. Liu, W. Ping, S. Li, Energy Technol (2017). https://doi.org/10.1002/ente.201600713

    Article  Google Scholar 

  31. Z. Yang, H. Du, L. Jin, D. Poelman, J. Mater. Chem. A (2021). https://doi.org/10.1039/d1ta04504k

    Article  Google Scholar 

  32. Z.-Y. Shen, Y. Wang, Y. Tang, Y. Yu, W.-Q. Luo, X. Wang, Y. Li, Z. Wang, F. Song, J. Mater. (2019). https://doi.org/10.1016/j.jmat.2019.06.003

    Article  Google Scholar 

  33. X. Du, Y. Pu, X. Li, X. Peng, Z. Sun, J. Zhang, J. Ji, R. Li, Q. Zhang, M. Chen, Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2020.12.021

    Article  Google Scholar 

  34. Z. Jiwei, Y. Xi, C. Xiaogang, Z. Liangying, H. Chen, Sci. Eng. B Solid-State Mater. Adv. Technol. Mater (2002). https://doi.org/10.1016/S0921-5107(02)00061-2

    Article  Google Scholar 

  35. Y.H. Huang, Y.J. Wu, B. Liu, T. Yang, J. Wang, J. Li, L. Chen, X.M. Chen, J. Mater. Chem. A (2018). https://doi.org/10.1039/C7TA10821D

    Article  Google Scholar 

  36. X. Wang, Y. Zhang, X. Song, Z. Yuan, T. Ma, Q. Zhang, C. Deng, T. Liang, J. European Ceramic Society. (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.09.024

    Article  Google Scholar 

  37. C. Liu, X. Chen, B. Zeng, F. Zhang, W. Song, Z. Luo, Y.L. Wang, J Adv Ceram (2023). https://doi.org/10.26599/JAC.2023.9220713

    Article  Google Scholar 

  38. J. Wang, C. Xu, B. Shen, J. Zhai, J. Mater. Sci. Mater. Electron. (2013). https://doi.org/10.1007/s10854-013-1248-5

    Article  Google Scholar 

  39. T. Wang, Y. Wang, H. Yangy, Y. Lin, L. Kong, J. Adv. Dielectr. (2018). https://doi.org/10.1142/S2010135X18500418

    Article  Google Scholar 

  40. W. Liu, W. Ping, S. Li, Energy Technol. 5, 1423–1428 (2017)

    Article  CAS  Google Scholar 

  41. Q. Xu, D. Zhan, D.P. Huang, H.X. Liu, W. Chen, F. Zhang, J. Alloys Compd. (2013). https://doi.org/10.1016/j.jallcom.2012.12.164

    Article  Google Scholar 

  42. T. Wu, Y. Pu, K. Chen, Ceram. Int. (2013). https://doi.org/10.1016/j.ceramint.2013.02.009

    Article  Google Scholar 

  43. D. Zhan, Q. Xu, D.P. Huang, H.X. Liu, W. Chen, F. Zhang, Phys. B Condens. Matter. (2014). https://doi.org/10.1016/j.physb.2014.01.025

    Article  Google Scholar 

  44. Z. Jiang, S. Prosandeev, L. Bellaiche, Phys. Rev. B. (2022). https://doi.org/10.1103/PhysRevB.105.024102

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of CNRST, OCP foundation, and the European Union’s Horizon H2020-MSCA-RISE research and innovation actions, ENGIMA and MELON.

Funding

CNRST Morocco, OCP foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors certify that they have participated sufficiently in the work to take public responsibility for the content. Furthermore, each author certifies that this work will not be submitted to other journal or published in any other publication before. AI: Investigation, Writing—Original Draft, visualization, and conceptualization; SM: Writing—Review & Editing; DM: Conceptualization, validation, resources, and supervision; LB: Conceptualization, resources, and supervision; AL: Writing—Review and Editing; AA: Software and supervision; MA and IAL: Reviewing and Editing; MEM: Formal analysis and Resources.

Corresponding author

Correspondence to A. Ihyadn.

Ethics declarations

Conflicts of interest

Not applicable.

Ethical approval

Not applicable.

Consent to participate

We confirm that all authors mentioned in the manuscript have participated in, read and approved the manuscript, and have given their consent for the submission and subsequent publication of the manuscript.

Consent for publication

We confirm that all the authors mentioned in the manuscript have agreed to publish this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ihyadn, A., Merselmiz, S., Mezzane, D. et al. Dielectric and energy storage properties of Ba0.85Ca0.15Zr0.1Ti0.90O3 ceramics with BaO–Na2O–Nb2O5–WO3–P2O5 glass addition. J Mater Sci: Mater Electron 34, 1051 (2023). https://doi.org/10.1007/s10854-023-10483-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10483-x

Navigation