Skip to main content
Log in

Modification of BaTiO3 for diversified applications by single Nd element substitution with wide doping range

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, A-site Nd doped BaTiO3 ceramics in the form of Ba1−xNd2x/3TiO3 with a wide substitution level range of x = 0–0.2 have been prepared via solid-state reaction method. Powder X-ray diffraction results reveal that Nd is completely incorporated into the BaTiO3 lattice in all specimens. Further analyses based on Rietveld refinement suggest that tetragonal and pseudo-cubic phases coexist in Ba1−xNd2x/3TiO3 ceramics with x ≤ 0.06, and the amount of tetragonal phase is raised with the increase of x value. When x value is larger than 0.08, only pseudo-cubic is observed. The generated \(V^{\prime\prime}_{{{\text{Ba}}}}\), \({\text{Nd}}_{{{\text{Ba}}}}^{\cdot }\) and \(V_{{\text{O}}}^{{\cdot \cdot }}\) defects, which are identified by X-ray photoelectron spectra, make the grain size displays a tendency of decrease first mainly due to the pining effect, and then increase ascribed to the accelerate of mass diffuse. By introducing such wide range of substitution level, Ba1−xNd2x/3TiO3 ceramics with colossal dielectric constant (x = 0.08), temperature-stable dielectric properties (x = 0.15), especially relaxor behavior (x = 0.20) noticed for the first time, are, respectively, received, which is closely related to the variation of phases and defects induced by the addition of Nd. This study may provide a special idea to modify BaTiO3 to satisfy diversified applications by single element with a wide doping range, and could lay the foundation of future works focusing on the various potential applications of Ba1−xNd2x/3TiO3 ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors declare that all data generated during the study appear in the submitted article.

References

  1. K. Hong, T.H. Lee, J.M. Suh et al., Direct observation of surface potential distribution in insulation resistance degraded acceptor-doped BaTiO3 multilayered ceramic capacitors. Electron. Mater. Lett. 14(5), 629–635 (2018)

    Article  CAS  Google Scholar 

  2. R. Ma, B. Cui, Y. Wang et al., The energy storage properties of fine-grained Ba0.8Sr0.2Zr0.1Ti0.9O3 ceramics enhanced by MgO and ZnO–B2O3–SiO2 coatings. Mater. Res. Bull. 111, 311–319 (2019)

    Article  CAS  Google Scholar 

  3. V.K. Deshpande, S.N. Borkar, Study of dielectric and ferroelectric properties of barium titanate with glass addition for energy storage application. Ferroelectrics 571(1), 109–119 (2021)

    Article  CAS  Google Scholar 

  4. A. Jain, A.K. Panwar, Synergetic effect of rare-earths doping on the microstructural and electrical properties of Sr and ca co-doped BaTiO3 nanoparticles. Ceram. Int. 46(8), 10270–10278 (2020)

    Article  CAS  Google Scholar 

  5. H. Wang, P. Zhao, L. Chen et al., Effects of dielectric thickness on energy storage properties of 0.87BaTiO3–0.13Bi(Zn2/3(Nb0.85Ta0.15)1/3)O3 multilayer ceramic capacitors. J. Eur. Ceram. Soc. 40(5), 1902–1908 (2020)

    Article  CAS  Google Scholar 

  6. K. Hong, T.H. Lee, J.M. Suh et al., Perspectives and challenges in multilayer ceramic capacitors for next generation electronics. J. Mater. Chem. C 7(32), 9782–9802 (2019)

    Article  CAS  Google Scholar 

  7. L. Zhou, P.M. Vilarinho, J.L. Baptista, Dielectric properties of bismuth doped Ba1–xSrxTiO3 ceramics. J. Eur. Ceram. Soc. 21(4), 531–534 (2001)

    Article  CAS  Google Scholar 

  8. N. Kurata, M. Kuwabara, Semiconducting-insulating transition for highly donor-dopod barium titanate ceramics. J. Am. Ceram. Soc. 76(6), 1605–1608 (1993)

    Article  CAS  Google Scholar 

  9. L. Zhang, O.P. Thakur, A. Feteira et al., Comment on the use of calcium as a dopant in X8R BaTiO3-based ceramics. Appl. Phys. Lett. 90(14), 142914 (2007)

    Article  Google Scholar 

  10. Q. Liu, J. Liu, D. Lu et al., Colossal dielectric behavior and relaxation in Nd-doped BaTiO3 at low temperature. Ceram. Int. 44(6), 7251–7258 (2018)

    Article  CAS  Google Scholar 

  11. D. Huang, Y. Wu, J.-Y. Miao et al., Colossal permittivity and dielectric relaxations of (nb, Al) co-doped BaTiO3 ceramics. J. Inorg. Mater. 32(2), 219–224 (2017)

    Article  Google Scholar 

  12. Q. Sun, Q. Gu, K. Zhu et al., Crystalline structure, defect chemistry and room temperature colossal permittivity of Nd-doped barium titanate. Sci. Rep. 7, 42274 (2017)

    Article  CAS  Google Scholar 

  13. F. Bahri, A. Simon, H. Khemakhem et al., Classical or relaxor ferroelectric behaviour of ceramics with composition Ba1-xBi2x/3TiO3. Phys. Stat. Sol. (A) 184(2), 459–464 (2001)

    Article  CAS  Google Scholar 

  14. Z. Jing, C. Ang, Z. Yu et al., Dielectric properties of ba(Ti1–yYy)O3 ceramics. J. Appl. Phys. 84(2), 983–986 (1998)

    Article  CAS  Google Scholar 

  15. X.P. Jiang, M. Zeng, K.W. Kowk et al., Dielectric and ferroelectric properties of Bi-doped BaTiO3 ceramics. Key Eng. Mater. 334, 977–980 (2007)

    Article  Google Scholar 

  16. T. Maiti, R. Guo, A.S. Bhalla, Structure-property phase diagram of BaZrxTi1–xO3 system. J. Am. Ceram. Soc. 91(6), 1769–1780 (2008)

    Article  CAS  Google Scholar 

  17. L. Li, B. Zhang, The effect of bimodal model on the ultra-broad temperature stable BaTiO3–Na0.5Bi0.5TiO3–Nb2O5 system. Scr. Mater. 114, 170–174 (2016)

    Article  CAS  Google Scholar 

  18. R. Muhammad, J. Camargo, A. Prado et al., Temperature stable relative permittivity from – 60 to 200 °C in 75BaTiO3–(25–x)BiMg0.5Ti0.5O3xNaNbO3 ceramics with X9R like characteristics. Mater. Lett. 233, 258–262 (2018)

    Article  CAS  Google Scholar 

  19. S.-F. Wang, Y.-S. Chen, Y.-F. Hsu et al., Effects of MnO addition on the stable dielectric properties of BaTiO3–(Bi0.5Na0.5)TiO3–Ta2O5 ceramics. Ceram. Int. 44(14), 17038–17043 (2018)

    Article  CAS  Google Scholar 

  20. P. Zhao, H. Wang, L. Wu et al., High-performance relaxor ferroelectric materials for energy storage applications. Adv. Energy Mater. 9(17), 1803048 (2019)

    Article  Google Scholar 

  21. H. Chazono, H. Kishi, Sintering characteristics in the BaTiO3–Nb2O5–Co3O4 ternary system: II, stability of so-called “core–shell” structure. J. Am. Ceram. Soc. 83(1), 101–106 (2000)

    Article  CAS  Google Scholar 

  22. X. Huang, H. Liu, H. Hao et al., Microstructure effect on dielectric properties of MgO-doped BaTiO3–BiYO3 ceramics. Ceram. Int. 41(6), 7489–7495 (2015)

    Article  CAS  Google Scholar 

  23. P. Murugaraj, T.R.N. Kutty, M. Subba Rao, Diffuse phase transformations in neodymium-doped BaTiO3 ceramics. J. Mater. Sci. 21(10), 3521–3527 (1986)

    Article  CAS  Google Scholar 

  24. A.S. Shaikh, R.W. Vest, Defect structure and dielectric properties of Nd2O3-modified BaTiO3. J. Am. Ceram. Soc. 69(9), 689–694 (1986)

    Article  CAS  Google Scholar 

  25. T.R.N. Kutty, P. Murugaraj, Phase relations and dielectric properties of BaTiO3 ceramics heavily substituted with neodymium. J. Mater. Sci. 22(10), 3652–3664 (1987)

    Article  CAS  Google Scholar 

  26. N. Hirose, J.M.S. Skakle, A.R. West, Doping mechanism and permittivity correlations in Nd-doped BaTiO3. J. Electroceram. 3(3), 233–238 (1999)

    Article  CAS  Google Scholar 

  27. Z. Yao, H. Liu, Y. Liu et al., Structure and dielectric behavior of Nd-doped BaTiO3 perovskites. Mater. Chem. Phys. 109(2–3), 475–481 (2008)

    Article  CAS  Google Scholar 

  28. L. Li, D. Guo, W. Xia et al., An ultra-broad working temperature dielectric material of BaTiO3-based ceramics with Nd2O3 addition. J. Am. Ceram. Soc. 95(7), 2107–2109 (2012)

    Article  CAS  Google Scholar 

  29. Q. Liu, J. Liu, D. Lu et al., Structural evolution and dielectric properties of nd and Mn co-doped BaTiO3 ceramics. J. Alloys Compd. 760, 31–41 (2018)

    Article  CAS  Google Scholar 

  30. Z. Raddaoui, R. Lahouli, S.E.L. Kossi et al., Effect of oxygen vacancies on dielectric properties of ba(1–x)nd(2x/3)TiO3 compounds. J. Alloys Compd. 771, 67–78 (2019)

    Article  CAS  Google Scholar 

  31. S. Sasikumar, T.K. Thirumalaisamy, S. Saravanakumar et al., Effect of neodymium doping in BaTiO3 ceramics on structural and ferroelectric properties. J. Mater. Sci.: Mater. Electron. 31(2), 1535–1546 (2019)

    Google Scholar 

  32. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2(2), 65–71 (1969)

    Article  CAS  Google Scholar 

  33. A.C. Larson, R.B.V. Dreele, General structure analysis system (GSAS). Los Alamos National Laboratory. 2004. Report LAUR 86–748. https://subversion.xray.aps.anl.gov/EXPGUI/gsas/all/GSAS%20Manual.pdf

  34. B.H. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34(2), 210–213 (2001)

    Article  CAS  Google Scholar 

  35. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675 (2012)

    Article  CAS  Google Scholar 

  36. D. Hesse, A. Graff, S. Senz et al., Topotaxial reaction fronts in complex Ba–Ti–Si oxide systems studied by transmission electron microscopy. Mater. Sci. Forum. 294–296, 597–600 (1998)

    Article  Google Scholar 

  37. L. Chen, H. Wang, P. Zhao et al., Effect of MnO2 on the dielectric properties of Nb-doped BaTiO3–(Bi0.5Na0.5)TiO3 ceramics for X9R MLCC applications. J. Am. Ceram. Soc. 102(5), 2781–2790 (2019)

    CAS  Google Scholar 

  38. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32(5), 751–767 (1976)

    Article  Google Scholar 

  39. D. Han, C. Wang, D. Lu et al., A temperature stable (Ba1–xCex)(Ti1–x/2Mgx/2)O3 lead-free ceramic for X4D capacitors. J. Alloys Compd. 821, 153480 (2020)

    Article  CAS  Google Scholar 

  40. Y. Wang, B. Cui, Y. Liu et al., Fabrication of submicron La2O3-coated BaTiO3 particles and fine-grained ceramics with temperature-stable dielectric properties. Scr. Mater. 90–91, 49–52 (2014)

    Article  Google Scholar 

  41. N.B. Mahmood, E.K. Al-Shakarchi, Three techniques used to produce BaTiO3 fine powder. J. Mod. Phys. 02(11), 1420–1428 (2011)

    Article  CAS  Google Scholar 

  42. S. Grazulis, A. Daskevic, A. Merkys et al., Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Res. 40(D1), D420–D427 (2012)

    Article  CAS  Google Scholar 

  43. T. Takeuchi, K. Ado, T. Asai et al., Thickness of cubic surface phase on barium titanate single-crystalline grains. J. Am. Ceram. Soc. 77(6), 1665–1668 (1994)

    Article  CAS  Google Scholar 

  44. T. Hoshina, Size effect of barium titanate: fine particles and ceramics. J. Ceram. Soc. Jpn. 121(1410), 156–161 (2013)

    Article  CAS  Google Scholar 

  45. A.A. Bush, V.P. Sirotinkin, S.A. Ivanov, Cubic and tetragonal modifications in BaTiO3 ceramic Samples: X-Ray diffraction analysis by the Rietveld Method. Crystallogr. Rep. 65(6), 1025–1032 (2020)

    Article  Google Scholar 

  46. H. Lu, J.S. Pan, X.F. Chen et al., Field emission of silicon emitter arrays coated with sol-gel (Ba0.65Sr0.35)1–xLaxTiO3 thin films. J. Appl. Phys. 102(1), 014113 (2007)

    Article  Google Scholar 

  47. K. Woong Lee, K. Siva Kumar, G. Heo et al., Characterization of hollow BaTiO3 nanofibers and intense visible photoluminescence. J. Appl. Phys. 114(13), 134303 (2013)

    Article  Google Scholar 

  48. A. Kompa, M.S. Murari, D. Kekuda et al., Low concentration rare earth doping (nd) and its effect on structural properties of titania thin films. Ceram. Int. 47(10), 13480–13487 (2021)

    Article  CAS  Google Scholar 

  49. X. Zhang, L. Zhao, L. Liu et al., Interface and defect modulation via a core–shell design in (Na0.5Bi0.5TiO3@La2O3)–(SrSn0.2Ti0.8O3@La2O3)–Bi2O3–B2O3–SiO2 composite ceramics for wide-temperature energy storage capacitors. Chem. Eng. J. 435, 135061 (2022)

    Article  CAS  Google Scholar 

  50. D. Ehre, H. Cohen, V. Lyahovitskaya et al., X-ray photoelectron spectroscopy of amorphous and quasiamorphous phases of BaTiO3 and SrTiO3. Phys. Rev. B 77(18), 184106 (2008)

    Article  Google Scholar 

  51. W. Peng, L. Li, S. Yu et al., Dielectric properties, microstructure and charge compensation of MnO2-doped BaTiO3-based ceramics in a reducing atmosphere. Ceram. Int. 47(20), 29191–29196 (2021)

    Article  CAS  Google Scholar 

  52. R. Hayati, M.A. Bahrevar, Y. Ganjkhanlou et al., Electromechanical properties of Ce-doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoceramics. J. Adv. Ceram. 8(2), 186–195 (2019)

    Article  CAS  Google Scholar 

  53. V.V. Mitic, Z.S. Nikolic, V.B. Pavlovic et al., Influence of rare-earth dopants on barium titanate ceramics microstructure and corresponding electrical properties. J. Am. Ceram. Soc. 93(1), 132–137 (2010)

    Article  CAS  Google Scholar 

  54. M.S. Mostari, N. Islam, M.A. Matin, Structural modification and evaluation of dielectric and ferromagnetic properties of Ce-modified BiFeO3–BaTiO3 ceramics. Ceram. Int. 46(10), 15840–15850 (2020)

    Article  CAS  Google Scholar 

  55. R. Muhammad, Y. Iqbal, Enhanced dielectric properties in Nb-doped BT-BMT ceramics. Ceram. Int. 42(16), 19413–19419 (2016)

    Article  CAS  Google Scholar 

  56. K. Uchino, S. Nomura, Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectrics 44(1), 55–61 (1982)

    Article  CAS  Google Scholar 

  57. J. Ravez, A. Simon, New lead-free relaxor ceramics derived from BaTiO3 by cationic heterovalent substitutions in the 12 C.N. crystallographic site. Solid State Sci. 2(5), 525–529 (2000)

    Article  CAS  Google Scholar 

  58. N. Abdelmoula, H. Chaabane, H. Khemakhem et al., Relaxor or classical ferroelectric behavior in A-site substituted perovskite type Ba1–x(Sm0.5Na0.5)xTiO3. Solid State Sci. 8(8), 880–887 (2006)

    Article  CAS  Google Scholar 

  59. P. Yong, D. Shihua, S. Tianxiu et al., Effects of defects on relaxation behavior of Nd-Doped BCZT Ceramics. Ferroelectrics 463(1), 83–89 (2014)

    Article  CAS  Google Scholar 

  60. H. Kaddoussi, N. Abdelmoula, Y. Gagou et al., X-ray diffraction, dielectric and Raman spectroscopy studies of Ba1–xNd2x/3(Ti0.9Zr0.1)O3 ceramics. Ceram. Int. 40(7), 10255–10261 (2014)

    Article  CAS  Google Scholar 

  61. D. Viehland, S.J. Jang, L.E. Cross et al., Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J. Appl. Phys. 68(6), 2916–2921 (1990)

    Article  CAS  Google Scholar 

  62. L. Wu, X. Wang, Z. Shen et al., Ferroelectric to Relaxor Transition in BaTiO3–Bi(Zn2/3Nb1/3)O3 Ceramics. J. Am. Ceram. Soc. 100(1), 265–275 (2017)

    Article  CAS  Google Scholar 

  63. T. Roncal-Herrero, J. Harrington, A. Zeb et al., Nanoscale compositional segregation and suppression of polar coupling in a relaxor ferroelectric. Acta Mater. 158, 422–429 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Natural Science Foundation of Hunan Province of China (Grant No. 2022JJ30661 and 2022JJ40549) and the Research Project of National University of Defense Technology (ZK22-54).

Author information

Authors and Affiliations

Authors

Contributions

FW performed the experiments, data analyses and wrote the original draft of manuscript. HM contributed to the data analysis and manuscript preparation significantly. XC helped to perform the data analyses with constructive discussions and made the funding acquisition. WL provided great help on the XPS data analyses and made the funding acquisition. ZL provided the experimental reagents and instruments. WZ and SB contributed to the conception of the study.

Corresponding authors

Correspondence to Haijun Mao or Weijun Zhang.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Mao, H., Chen, X. et al. Modification of BaTiO3 for diversified applications by single Nd element substitution with wide doping range. J Mater Sci: Mater Electron 34, 1062 (2023). https://doi.org/10.1007/s10854-023-10482-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10482-y

Navigation