Skip to main content

Advertisement

Log in

Synergistic effect of graphene on improving laser sealing performance of inorganic glass solder

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Inorganic glass solder has high application potential in laser sealing of electronic components, but its ability to convert light energy into heat energy still needs to be further improved. This paper demonstrates that graphene can help bismuthate glass solder perform much better in laser sealing. As demonstrated here, the shear strength (bonding strength) of the seal had more than doubled. However, in order to obtain the maximum shear strength, the optimum mass content of graphene should be ca. 0.5–1.0%, because cracks may form at the interface between graphene and glass, thus reducing the mechanical strength. The further results show that the participation of graphene led to improvement in the photothermal conversion efficiency of the glass solder, and favorable changes in the flow characteristics of the glass melt. When only 1% graphene was added, the photothermal conversion efficiency of the glass solder under 915 nm laser increased from 48.4 to 60.1%, which is very close to 64.3% of graphene alone. In addition, the contact angle between glass melt and quartz glass chip was reduced from around 140° to 25°, implying more beneficial fluidity and wettability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. S. Zhang, X. Xu, T. Lin, P. He, Recent advances in nano-materials for packaging of electronic devices. J. Mater. Sci. Mater. Electron. 30(15), 13855–13868 (2019)

    Article  CAS  Google Scholar 

  2. S. Ma, G. Yuan, Y. Zhang, N. Yang, Y. Li, Q. Chen, Development of encapsulation strategies towards the commercialization of perovskite solar cells. Energy Environ. Sci. 15(1), 13–55 (2022)

    Article  CAS  Google Scholar 

  3. Y. Wan, G. Li, Y. Yao, X. Zeng, P. Zhu, R. Sun, Recent advances in polymer-based electronic packaging materials. Compos. Commun. 19, 154–167 (2020)

    Article  Google Scholar 

  4. Y. Wang, L. Zhuo, E. Yin, Progress, challenges and potentials/trends of tungsten-copper (W Cu) composites/pseudo-alloys: fabrication, regulation and application. Int. J. Refract. Met. Hard Mat. 100, 105648 (2021)

    Article  CAS  Google Scholar 

  5. Q. Liang, C. Liu, L. Cao, Y. Zhang, Research progress and application of Al-matrix composites used for electronic packaging. Mater. Sci. 12(05), 453–464 (2022)

    Google Scholar 

  6. R. Zhang, Y. Zhu, X. Liao, N. Gao, Multi-chip plastic package technology with new substrate. 18th international conference on electronic packaging technology (ICEPT 2017), pp. 173–176

  7. X. Jiang, Z. Wang, H. Sun, X. Chen, T. Zhao, G. Yu, C. Zhou, Reliability analysis and utilization of PEMs in space application. Acta Astronaut. 65(9–10), 1500–1505 (2009)

    Article  CAS  Google Scholar 

  8. K.Y. Au, D. M. Zhi, V. Chidambaram, B. Lin, K. Piotr, C. KaiLiang, High temperature endurable hermetic sealing material selection and reliability comparison for IR gas sensor module packaging. Proceedings of the 2016 IEEE 18th electronics packaging technology conference (EPTC 2016), pp. 1–5

  9. R. Sastrawan, J. Beier, U. Belledin, S. Hemming, A. Hinsch, R. Kern, C. Vetter, F.M. Petrat, A. Prodi-Schwab, P. Lechner, W. Hoffmann, New interdigital design for large area dye solar modules using a lead-free glass frit sealing. Prog. Photovolt. 14(8), 697–709 (2006)

    Article  CAS  Google Scholar 

  10. S.J. Kwon, J.H. Kim, A low-temperature vacuum in-line sealing technology for a high-performance plasma display panel. J. Korean Phys. Soc. 45(4), 1109–1113 (2004)

    Google Scholar 

  11. R. Tian, F. Cao, Y. Li, L. Yin, J. Zhang, Application of laser-assisted glass frit bonding encapsulation in all inorganic quantum dot light emitting devices. Mol. Cryst. Liquid Cryst. 676(1), 59–64 (2019)

    Article  Google Scholar 

  12. F. Ribeiro, J. Macaira, I. Mesquita, J. Gabriel, L. Andrade, A. Mendes, Laser assisted dye-sensitized solar cell sealing: from small to large cells areas. J. Renew. Sustain. Energy. 6(1), 011208 (2014)

    Article  Google Scholar 

  13. W. Guo, J. Hou, T.S. Lin, P. He, Joining high volume fraction SiC particle reinforced aluminum matrix composites (SiCp/Al) by low melting point stannous oxide-zinc oxide-phosphorus pentoxide glass. Ceram. Int. 47, 3955–3963 (2021)

    Article  CAS  Google Scholar 

  14. Z. Wang, C. Yang, S. Li, Study on structure and performance of Bi-B-Zn sealing glass encapsulated fiber Bragg grating. Ceram. Int. 49(9), 14432–14444 (2023)

    Article  CAS  Google Scholar 

  15. H. Lee, J. Hwang, T.Y. Lim, Effect of TiO2 on the properties of ZnO-V2O5-P2O5-TiO2 low temperature sealing glasses. Korean J. Mater. Res. 19(11), 613–618 (2009)

    CAS  Google Scholar 

  16. Z. Huang, L. Luo, L. Liu, Effect of Al2O3 addition on the non-isothermal crystallization kinetics and long-term stability of BCABS sealing glass for IT-SOFCs. J. Adv. Ceram. 7(4), 380–387 (2018)

    Article  CAS  Google Scholar 

  17. Y. Lai, Z. Chen, Y. Huang, J. Zhang, The Process and reliability tests of glass-to-glass laser bonding for top-emission OLED device. 2012 IEEE 62nd electronic components and technology conference (ECTC 2012), pp. 2036–2041

  18. J. Lee, J. Kim, H. Kim, Laser-heating characteristics of CuO-incorporating glasses. J. Korean Ceram. Soc. 52(2), 119–127 (2015)

    Article  CAS  Google Scholar 

  19. S. Emami, J. Martins, L. Andrade, J. Mendes, A. Mendes, Low temperature hermetic laser-assisted glass frit encapsulation of soda lime glass substrates. Opt. Lasers Eng. 96, 107–116 (2017)

    Article  Google Scholar 

  20. S. Logunov, S. Marjanovic, J. Balakrishnan, Laser assisted frit sealing for high thermal expansion glasses. J. Laser Micro Nanoeng. 7(3), 326–333 (2012)

    Article  CAS  Google Scholar 

  21. Y. Liu, L. Sun, Laser-heating wire bonding on MEMS packaging. AIP Adv. 4(3), 031312 (2014)

    Article  CAS  Google Scholar 

  22. W. Wang, Y. Xiao, X. Wu, J. Zhang, Optimization of laser-assisted glass frit bonding process by response surface methodology. Opt. Laser Technol. 77, 111–115 (2016)

    Article  Google Scholar 

  23. R. Cruz, J.A. da Cruz Ranita, J. Macaira, F. Ribeiro, A.M.B. da Silva, J.M. Oliveira, M.H.F.V. Fernandes, H.A. Ribeiro, J.G. Mendes, A. Mendes, Glass–glass laser-assisted glass frit bonding. IEEE Trans. Compon. Pack. Manuf. Technol. 2(12), 1949–1956 (2012)

    Article  CAS  Google Scholar 

  24. R. Tian, Y. Li, L. Yin, J. Zhang, Hermeticity test of low-melting point sealing glass and analysis of encapsulation failure. 18th international conference on electronic packaging technology (ICEPT 2017), pp.844–849

  25. P. Zhong, G. Chen, S. Cheng, M. Li, Study on the effect of laser pre-sintering in laser-assisted glass frit bonding. J. Mater. Res. Technol. 20, 2309–2322 (2022)

    Article  Google Scholar 

  26. H. Miao, L. Zhang, S. Liu, S. Zhang, S. Memon, B. Zhu, Laser sealing for vacuum plate glass with PbO-TiO2-SiO2-RxOy solder. Sustainability 12(8), 3118 (2020)

    Article  CAS  Google Scholar 

  27. A. Voznesenskaya, D. Kochuev, A. Raznoschikov, A. Kireev, K. Khorkov, Investigation of absorption of laser radiation by copper- and nickel-based powders to obtain gradient materials by selective laser melting. EPJ Web Conf. 220, 1–2 (2019)

    Article  Google Scholar 

  28. C. Lin, Y. Shen, C. Huang, S. Tu, Laser sealing of organic light-emitting diode using low melting temperature glass frit. Opt. Quantum Electron. 49(6), 208 (2017)

    Article  Google Scholar 

  29. S. Kim, K. Han, S. Kim, L. Kadathala, J. Kim, J. Choi, Strengthening thermal stability in V2O5-ZnO-BaO-B2O3-M(PO3)n glass system (M=Al, Mg) for laser sealing applications. Appl. Sci. 11(10), 4603 (2021)

    Article  CAS  Google Scholar 

  30. F. Ribeiro, J. Maçaira, R. Cruz, J. Gabriel, L. Andrade, A. Mendes, Laser assisted glass frit sealing of dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells. 96, 43–49 (2012)

    Article  CAS  Google Scholar 

  31. A. Yamada, T. Takahashi, Multi-pulse modulation method in photothermal atomic force microscopy for variable frequency modulation of incident light. Jpn. J. Appl. Phys. 60, 1003 (2021)

    Article  Google Scholar 

  32. M. Freitag, H.Y. Chiu, M. Steiner, V. Perebeinos, P. Avouris, Thermal infrared emission from biased grapheme. Nat. Nanotechnol. 5(7), 497–501 (2010)

    Article  CAS  Google Scholar 

  33. Q. Zou, M. Abbas, L. Zhao, S. Li, G. Shen, X. Yan, Biological photothermal nanodots based on self-assembly of peptide–porphyrin conjugates for antitumor therapy. J. Am. Chem. Soc. 139(5), 1921–1927 (2017)

    Article  CAS  Google Scholar 

  34. S. Alexandrov, S. Usov, A. Voznesenskaya, A. Zhdanov, D. Kochuev, V. Morozov, Research of the absorption of laser radiation by powder materials. J. Phys 1164, 012201 (2019)

    Google Scholar 

  35. F. Soysal, Z. Çıplak, B. Getiren, C. Gökalp, N. Yıldız, Synthesis and characterization of reduced graphene oxide-iron oxide-polyaniline ternary nanocomposite and determination of its photothermal properties. Mater. Res. Bull. 124, 110763 (2020)

    Article  CAS  Google Scholar 

  36. J. Li, W. Zhang, W. Ji, J. Wang, N. Wang, W. Wu, Q. Wu, X. Hou, W. Hu, L. Li, Near infrared photothermal conversion materials: mechanism, preparation, and photothermal cancer therapy applications. J. Mater. Chem. B. 9(38), 7909–7926 (2021)

    Article  CAS  Google Scholar 

  37. S. Ilahi, N. Yacoubi, F. Genty, Photothermal deflection technique investigation of thermal annealing effects of AlGaAsSb/GaSb laser structure: non-radiative recombination parameters enhancement. Mater. Res. Bull. 106, 332–336 (2018)

    Article  CAS  Google Scholar 

  38. S. Çelen, S. Karadeniz, H. Özden, Effect of laser welding parameters on fusion zone morphological, mechanical and microstructural characteristics of AISI 304 stainless steel. Materialwiss. Werkstofftech. 39(11), 845–850 (2008)

    Article  Google Scholar 

  39. B. Li, L. Zhou, D. Wu, H. Peng, K. Yan, Y. Zhou, Z. Liu, Photochemical chlorination of graphene. ACS Nano 5(7), 5957–5961 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities.

Funding

Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

LN contributed to experimentation and original manuscript. XS participated in material preparation, data collection, and analysis. YY contributed to methodology and data analysis. XY contributed to conceptualization and Methodology. HT contributed to supervision, final manuscript, and review. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hua Tong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This paper meets the ethical standards of this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 637 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, L., Sun, X., Yang, Y. et al. Synergistic effect of graphene on improving laser sealing performance of inorganic glass solder. J Mater Sci: Mater Electron 34, 1070 (2023). https://doi.org/10.1007/s10854-023-10477-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10477-9

Navigation