Skip to main content
Log in

Effect of Sr-doped on physical and photoluminescence properties of SnO2 transparent conducting oxide thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present study used the sol–gel spin coating technique to grow pure and Strontium (Sr) doped SnO2 thin films on a glass substrate, X-ray diffraction analysis showed that all the deposited films had a polycrystalline tetragonal crystal structure. The surface topography and surface roughness (Rrms) were estimated with the AFM analysis. The Fourier transform infrared spectroscopy (FTIR) study showed that all the films exhibit the Sn–O, Sn–O–Sn, Sn–OH, and O–H vibration peaks. The XPS spectra of Sr-doped SnO2 films revealed the presence of Sn, O, and Sr elements and their oxidation states. The Sr-doped SnO2 films have shown optical transmittance of above 76% in the visible region. The optical band gap energy (Eg) was found to be 3.89 eV in pure SnO2 film, whereas it is decreased with the Sr doping, the lowest band gap of 3.78 eV was obtained in 5 at% Sr: SnO2 film. Photoluminescence analysis (PL) revealed the presence of oxygen vacancies in Sr-doped SnO2 films with a strong green emission peak along with small intensities of UV and blue emission bands. Further, a minimum sheet resistance (Rsh) of 32 Ω/Sq and a high figure of merit (ϕ) of 3.8 × 10–3 Ω−1 were found in 3 at% Sr: SnO2 film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. B.G. Lewis, D.C. Paine, MRS Bull. 25, 22–27 (2000)

    Article  CAS  Google Scholar 

  2. S.D. Ponja, S. Sathasivam, I.P. Parkin, C.J. Carmalt, Sci. Rep. 10, 638 (2020)

    Article  CAS  Google Scholar 

  3. J. Kasai, T. Hitosugi, M. Moriyama, K. Goshonoo, N.L.H. Hoang, S. Nakao, N. Yamada, T. Hasegawa, J. Appl. Phys. 107, 053110 (2010)

    Article  Google Scholar 

  4. J.H. Lee, B.O. Park, Surf. Coat. Technol. 184, 102–107 (2004)

    Article  CAS  Google Scholar 

  5. V. Ganesh, H.S. Akkera, Y. Bitla, L. Haritha, S. AlFaify, I.S. Yahia, Phys. B: Condens. Matter 635, 413786 (2022)

    Article  CAS  Google Scholar 

  6. K. Gurumurugan, D. Mangalaraj, S.K. Narayandass, C. Balasubramanian, Phys. Status Solidi (a) 143, 85–91 (1994)

    Article  CAS  Google Scholar 

  7. R.B.H. Tahar, T. Ban, Y. Ohya, Y. Takahashi, J. Appl. Phys. 83, 2631–2645 (1998)

    Article  Google Scholar 

  8. A. Chowdhury, D.W. Kang, M. Isshiki, T. Oyama, H. Odaka, P. Sichanugrist, M. Konagai, Sol. Energ. Mater. Sol. Cells 140, 126–133 (2015)

    Article  CAS  Google Scholar 

  9. H. Kim, A. Pique, Appl. Phys. Let. 84, 218–220 (2004)

    Article  CAS  Google Scholar 

  10. T. Minami, S. Takata, T. Kakumu, J. Vac. Sci. Technol. 14, 1689 (1996)

    Article  CAS  Google Scholar 

  11. S. Calnan, A.N. Tiwari, Thin Solid Films 518, 1839–1849 (2010)

    Article  CAS  Google Scholar 

  12. Y. Yang, L. Wang, H. Yan, S. Jin, T.J. Marks, Appl. Phys. Lett. 89, 051116 (2006)

    Article  Google Scholar 

  13. E. Budianu, M. Purica, F. Iacomi, C. Baban, P. Prepelita, E. Manea, Thin Solid Films 516, 1629–1633 (2008)

    Article  CAS  Google Scholar 

  14. B.Y. Wei, M.C. Hsu, P.G. Su, H.M. Lin, R.J. Wu, H.J. Lai, Sens. Actuators B 101, 81–89 (2004)

    Article  CAS  Google Scholar 

  15. I. Hamberg, C.G. Granqvist, J. Appl. Phys. 60, 123–160 (1986)

    Article  Google Scholar 

  16. S. Sambasivam, P.S. Maram, C.V.V. Gopi, I.M. Obaidat, Optik 202, 163596 (2020)

    Article  CAS  Google Scholar 

  17. Z. Li, M. Sun, B. Dong, J. Liu, Chem. Phys. Lett. 787, 139238 (2022)

    Article  CAS  Google Scholar 

  18. S. Chacko, M.J. Bushiri, V.K. Vaidyan, J. Phys. D Appl. Phys. 39, 4540–4543 (2006)

    Article  CAS  Google Scholar 

  19. S. Chen, X. Zhao, H. Xie, J. Liu, L. Duan, X. Ba, J. Zhao, Appl. Surf. Sci. 258, 3255–3259 (2012)

    Article  CAS  Google Scholar 

  20. I.G. Tamizhmani, R. Sakthivel, R.B. Ramraj, A. Mukannan, Appl. Phys. A 127, 923 (2021)

    Article  CAS  Google Scholar 

  21. S. Palanichamy, J.R. Mohamed, K.D.A. Kumar, P.S.S. Kumar, S. Pandiaraj, L. Amalraj, Optik 194, 162887 (2019)

    Article  Google Scholar 

  22. B. Teldja, B. Noureddine, B. Azzeddine, T. Meriem, Optik 209, 164586 (2020)

    Article  CAS  Google Scholar 

  23. B.G. Hunashimarad, J.S. Bhat, P.V. Raghavendra, R.F. Bhajantri, Opt. Mater. 114, 110962 (2021)

    Article  CAS  Google Scholar 

  24. S. Haya, O. Brahmia, O. Halimi, M. Sebais, B. Boudine, Mater. Res. Express 4, 106406 (2017)

    Article  Google Scholar 

  25. Y.J. Seo, G.W. Kim, C.H. Sung, M.S. Anwar, C.G. Lee, B.H. Koo, Curr. Appl. Phys. 11, S310–S313 (2011)

    Article  Google Scholar 

  26. H. He, Z. Xie, Q. Li, J. Li, Q. Zhang, J. Alloys Compd. 774, 258–262 (2017)

    Article  Google Scholar 

  27. A. Agarwal, T. Prathyusha, T. Srikanth, A.S. Reddy, P.S. Reddy, C.S. Reddy, Optik 127, 9457–9463 (2016)

    Article  Google Scholar 

  28. Q. Gao, M. Li, X. Li, Y. Liu, C.L. Song, J.X. Wang, Q.Y. Liu, J.B. Liu, G.R. Han, J. Alloys Compd. 550, 144–149 (2013)

    Article  CAS  Google Scholar 

  29. N.N.K. Reddy, H.S. Akkera, M.C. Sekhar, S.H. Park, Appl. Phys. A 123, 761 (2017)

    Article  Google Scholar 

  30. U. Holzwarth, N. Gibson, Nature Nanotech 6, 534 (2011)

    Article  CAS  Google Scholar 

  31. D. Dastan, Appl. Phys. A 123, 699 (2017)

    Article  Google Scholar 

  32. A. Ahmed, M.N. Siddique, U. Alam, T. Ali, P. Tripathi, Appl. Surf. Sci. 463, 976–985 (2019)

    Article  CAS  Google Scholar 

  33. G. Turgut, E.F. Keskenler, S.E.S. AydinOnmez, S. Doǧan, B. Düzgün, M. Ertuǧrul, Superlattice Microst. 56, 107–116 (2013)

    Article  CAS  Google Scholar 

  34. V. Fauzia, M.N. Yusnidar, L.H. Lalasari, A. Subhan, A.A. Umar, J. Alloy. Comp. 720, 79–85 (2017)

    Article  CAS  Google Scholar 

  35. M. Ayadi, O. Benhaoua, M. Sebais, O. Halimi, B. Boudine, M.S. Aida, Mater. Res. Express 6, 076407 (2019)

    Article  CAS  Google Scholar 

  36. H.S. Akkera, P. Sivakumar, Y. Bitla, V. Ganesh, N. Kambhala, C.S. Naveen, T.R.K. Reddy, G.S. Reddy, Phys. B: Condens. Matter. 638, 413839 (2022)

    Article  CAS  Google Scholar 

  37. R.W. Phillips, Surf. Coat. Technol. 68, 770–775 (1994)

    Article  Google Scholar 

  38. J. Mazloom, F.E. Ghodsi, Mater. Res. Bull. 48, 1468–1476 (2013)

    Article  CAS  Google Scholar 

  39. Y. Bouznit, A. Henni, Mater. Chem. Phys. 233, 242–248 (2019)

    Article  CAS  Google Scholar 

  40. M.A.Y. Barakat, M. Shaban, A.M.E. Sayed, Mater. Res. Express 5, 066407 (2018)

    Article  Google Scholar 

  41. L.P. Singh, N.M. Luwang, S.K. Srivastava, New J. Chem. 38, 115–121 (2014)

    Article  CAS  Google Scholar 

  42. S. Roguai, A. Djelloul, Inorg. Chem. Commun. 138, 109308 (2022)

    Article  CAS  Google Scholar 

  43. S. Wu, H. Cao, S. Yin, X. Liu, X. Zhang, J. Phys. Chem. C 113, 17893–17898 (2009)

    Article  CAS  Google Scholar 

  44. F. Altaf, S. Ahmed, D. Dastan, R. Batool, Z.U. Rehman, Z. Shi, M.U. Hameed, P. Bocchetta, K. Jacob, Mater Today Chem. 24, 100843 (2022)

    Article  CAS  Google Scholar 

  45. M. Sun, J. Liu, B. Dong, Curr. Appl. Phys. 20, 462–469 (2020)

    Article  Google Scholar 

  46. R. Bachelet, F. Sánchez, F.J. Palomares, C. Ocal, J. Fontcuberta, Appl. Phys. Lett. 95, 141915 (2009)

    Article  Google Scholar 

  47. X.T. Yin, H. Huang, J.L. Xie, D. Dastan, J. Li, Y. Liu, X.M. Tan, X.C. Gao, W.A. Shah, X.G. Ma, Green Chem. Lett. Rev. 15, 546–556 (2022)

    Article  CAS  Google Scholar 

  48. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983 (1996)

    Article  CAS  Google Scholar 

  49. A. Tripathi, R.K. Shukla, Bull. Mater. Sci. 37, 417–423 (2014)

    Article  CAS  Google Scholar 

  50. S. Yu, L. Ding, C. Xue, L. Chen, W.F. Zhang, J. Non. Cryst. Solids 358, 3137–3140 (2012)

    Article  CAS  Google Scholar 

  51. E. Abdelkader, L. Nadjia, B. Naceur, B. Noureddine, J. Alloys Compd. 679, 408–419 (2016)

    Article  CAS  Google Scholar 

  52. D.L. Wood, J. Tauc, Phys. Rev. B 5, 3144–3151 (1972)

    Article  Google Scholar 

  53. J. Davoud Dastan, Atomic Molecul. Condensate Nano Phys. 2, 109–114 (2015)

    Article  Google Scholar 

  54. N. Li, K. Du, G. Liu, Y. Xie, G. Zhou, J. Zhu, F. Li, H.-M. Cheng, J. Mater. Chem. A. 1, 1536–1539 (2013)

    Article  CAS  Google Scholar 

  55. S.S. Soumya, T.S. Xavier, Phys. B: Condens. Matter. 624, 413432 (2022)

    Article  CAS  Google Scholar 

  56. A.K. Kulkarnia, K.H. Schulzb, T.S. Lima, M. Khanb, Thin Solid Films 345, 273–277 (1999)

    Article  Google Scholar 

  57. D. Dastan, K. Shan, A. Jafari, F. Gity, X.T. Yin, Z. Shi, N.D. Alharbi, B.A. Reshi, W. Fu, S. Talu, L. Aljerf, H. Garmestani, L. Ansari, Appl. Phys. A 128, 400 (2022)

    Article  CAS  Google Scholar 

  58. G. Haacke, J. Appl. Phys. 47, 4086 (1976)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The necessary characterization facilities were generously provided by the IISc Bangalore, India, which the authors appreciate. The authors are also thankful to Presidency University, Bangalore, India, for providing the synthesis resources to complete this work.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed.

Corresponding author

Correspondence to Harish Sharma Akkera.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkera, H.S., Mann, V., Varalakshmi, B.N. et al. Effect of Sr-doped on physical and photoluminescence properties of SnO2 transparent conducting oxide thin films. J Mater Sci: Mater Electron 34, 1044 (2023). https://doi.org/10.1007/s10854-023-10473-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10473-z

Navigation