Skip to main content
Log in

Studies of phase transitions, Raman spectra and microwave dielectric properties of perovskite-structured (Na1−xLix)0.5Nd0.5TiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High dielectric constant microwave ceramics are essential for ceramic-based devices, such as the dielectric resonator used in miniaturized mobile phone components. Herein, perovskite-type (Na1−xLix)0.5Nd0.5TiO3 (0 ≤ x ≤ 1) ceramics were fabricated using the traditional solid-state processing to explore the changing mechanism of dielectric properties and obtain a component with favorable microwave dielectric properties. The results showed that the maximum εr value (140.3) of samples achieved at x = 0.4 due to changes in bond valence at the B-site, while Q×f and τf values decreased with increasing x value. Raman spectra demonstrated that the broader Raman scattering peaks corresponded to shorter microwave energy propagation decay times, which resulted in a decline of Q×f value. The (Na0.3Li0.7)0.5Nd0.5TiO3 sample showed promising microwave dielectric properties (ɛr = 127.3, Q×f = 2,471 GHz, and τf = − 47.3 ppm/°C). Finally, it was determined that a temperature-stable ceramic with a high εr value could be produced when the x value fell within the range of 0.7 to 0.8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. M. Ma, K. Song, Y. Ji, F. Hussain, A. Khesro, M. Mao, L. Xue et al., 5G microstrip patch antenna and microwave dielectric properties of cold sintered LiWVO6–K2MoO4 composite ceramics. Ceram. Int. 47, 19241–19246 (2021)

    Article  CAS  Google Scholar 

  2. C. Du, D. Zhou, R.-T. Li, H.-T. Chen, G.-H. Zhou, B. Tang, M.A. Darwish et al., Fabrication of wideband low-profile dielectric patch antennas from temperature stable 0.65CaTiO3–0.35LaAlO3 microwave Dielectric Ceramic. Adv. Electron. Mater. 8(9), 2101414 (2022)

    Article  CAS  Google Scholar 

  3. X. Chen, H. Li, P. Zhang, H. Hu, G. Chen, G. Li, A low-permittivity microwave dielectric ceramic BaZnP2O7 and its performance modification. J. Am. Ceram. Soc. 104, 5214–5223 (2021)

    Article  CAS  Google Scholar 

  4. J. Li, H.-H. Wu, J. Li, X. Su, R. Yin, S. Qin, D. Guo et al., Room-temperature symmetric giant positive and negative Electrocaloric Effect in PbMg0.5W0.5O3 Antiferroelectric Ceramic. Adv. Funct. Mater. 31, 2101176 (2021)

    Article  CAS  Google Scholar 

  5. L. Jiang, B. Wu, X. Wei, X. Lv, H. Xue, G. Lu, Y. Zeng et al., Flexible lead-free piezoelectric arrays for high-efficiency wireless ultrasonic energy transfer and communication. Mater. Horiz. 9, 2180–2190 (2022)

    Article  CAS  Google Scholar 

  6. W. Wu, J. Ma, N. Wang, C. Shi, K. Chen, Y. Zhu, M. Chen et al., Electrical properties, strain stability and electrostrictive behavior in 0.5BaZr0.2Ti0.8O3-(0.5-x)Ba0.7Ca0.3TiO3-xBa0.7Sr0.3TiO3 lead-free ceramics. J. Alloy Compd. 814, 152240 (2020)

    Article  CAS  Google Scholar 

  7. Z. Xiong, C. Yang, B. Tang, Z. Fang, H. Chen, S. Zhang, Structure–property relationships of perovskite-structured Ca0.61Nd0.26Ti1-x(Cr0.5Nb0.5)xO3 ceramics. Ceram. Int. 44, 7384–7392 (2018)

    Article  CAS  Google Scholar 

  8. Z. Xiong, B. Tang, Z. Fang, C. Yang, S. Zhang, Effects of (Cr0.5Ta0.5)4+ on structure and microwave dielectric properties of Ca0.61Nd0.26TiO3 ceramics. Ceram. Int. 44, 7771–7779 (2018)

    Article  CAS  Google Scholar 

  9. Z. Xiong, B. Tang, C. Yang, C. Yuan, S. Zhang, Different additives doped Ca-Nd-Ti Microwave Dielectric Ceramics with distorted oxygen octahedrons and high Q × f value. ACS Omega 3, 11033–11040 (2018)

    Article  CAS  Google Scholar 

  10. Z. Xiong, B. Tang, F. Luo, H. Yang, X. Zhang, C. Yang, Z. Fang et al., Characterization of structure, chemical bond and microwave dielectric properties in Ca0.61Nd0.26TiO3 ceramic substituted by chromium for titanium. J. Alloy Compd. 835, 155249 (2020)

    Article  CAS  Google Scholar 

  11. Z. Xiong, X. Zhang, B. Tang, C. Yang, Z. Fang, S. Zhang, Characterization of structure and properties in CaO-Nd2O3-TiO2 microwave dielectric ceramic modified by Al. Mater. Charact. 2O3, 111108 (2021)

    Article  Google Scholar 

  12. Z. Xiong, X. Zhang, Z. Fang, W. Wu, L. Li, B. Tang, S. Zhang, Characterization of structural and electrical properties of Ca0.61Nd0.26TiO3 ceramic tailored by complex ions (Al0.5Nb0.5)4+. J. Alloy Compd. 899, 163234 (2022)

    Article  CAS  Google Scholar 

  13. T. Hisakazu, B. Yoko, E. Kenichi, O. Yasuhiko, S. Kenichi, K. Kazuhiko, N. Shoichi, Dielectric characteristics of (A1/21+A1/23+)TiO3 Ceramics at Microwave Frequencies. Jpn J. Appl. Phys. 30, 2339 (1991)

    Article  Google Scholar 

  14. Y. Inaguma, J.H. Sohn, I.S. Kim, M. Itoh, T. Nakamura, Quantum paraelectricity in a perovskite La1/2Na1/2TiO3. J. Phys. Soc. Jpn. 61, 3831–3832 (1992)

    Article  CAS  Google Scholar 

  15. H. Sun, T. Pai, Y.J. Nakamura, Y. Shan, M. Inaguma, Itoh, High temperature quantum paraelectricity in perovskite-type titanates Ln1/2Na1/2TiO3 (ln = La, Pr, Nd, Sm, Eu, Gd and Tb). Ferroelectrics 200, 93–107 (1997)

    Article  CAS  Google Scholar 

  16. T. Hisakazu, B. Yoko, E. Kenichi, S. Kenichi, Microwave Dielectric Properties and Crystal structure of CaO-Li2O-(1-x)Sm2O3-xLn2O3-TiO2 (ln: lanthanide) Ceramics System. Jpn J. Appl. Phys. 35, 5069 (1996)

    Article  Google Scholar 

  17. K.H. Yoon, Y.H. Chang, W.S. Kim, J.B. Kim, E.S. Kim, Dielectric properties of Ca1-xSm2x/3TiO3-Li1/2Ln1/2TiO3 ceramics. Jpn J. Appl. Phys. 35, 5145–5149 (1996)

    Article  CAS  Google Scholar 

  18. Z. Fang, B. Tang, E. Li, S. Zhang, High-Q microwave dielectric properties in the Na0.5Sm0.5TiO3+Cr2O3 ceramics by one synthetic process. J. Alloy Compd. 705, 456–461 (2017)

    Article  CAS  Google Scholar 

  19. L. Zhou, B. Tang, S. Zhang, Influence of Sn-substitution on microstructure and microwave dielectric properties of Na1/2Nd1/2TiO3 ceramics. J. Mater. Sci. Mater. Electron. 26, 424–428 (2015)

    Article  CAS  Google Scholar 

  20. Y. Yang, C.L. Yuan, G.H. Chen, F.W. Peng, T. Yang, Microwave dielectric properties of (Ca0.8Sr0.2)x(Li0.5Nd0.5)1-xTiO3 ceramics. Adv. Mater. Res. 1095, 583–589 (2015)

    Article  Google Scholar 

  21. L. Gan, S. An, S. Yuan, J. Jiang, J. Wang, T. Zhang, Sintering characteristics and microwave Dielectric Properties of (1 – x)Li0.5Sm0.5TiO3xNa0.5Sm0.5TiO3 (x = 0.35 to 0.45) Ceramics. J. Electron. Mater. 48, 3624–3630 (2019)

    Article  CAS  Google Scholar 

  22. Z. Fang, B. Tang, F. Si, S. Zhang, Low temperature sintering of high permittivity Ca-Li-Nd-Ti microwave dielectric ceramics with BaCu(B2O5) additives. J. Alloy Compd. 693, 843–852 (2017)

    Article  CAS  Google Scholar 

  23. Y. Gu, C. Li, J. Huang, Q. Li, L. Li, X. Li, Effect of BaCu(B2O5) on the sintering and microwave dielectric properties of Ca0.4Li0.3Sm0.05Nd0.25TiO3 ceramics. J. Eur. Ceram. Soc. 37, 4673–4679 (2017)

    Article  CAS  Google Scholar 

  24. J. Ibarra, A. Várez, C. León, J. Santamaría, L.M. Torres-Martínez, J. Sanz, Influence of composition on the structure and conductivity of the fast ionic conductors La2/3–xLi3xTiO3 (0.03 ≤ x ≤ 0.167). Solid State Ion. 134, 219–228 (2000)

    Article  CAS  Google Scholar 

  25. E. García-González, E. Urones-Garrote, A. Várez, J. Sanz, Unravelling the complex nanostructure of La0.5–xLi0.5–xSr2xTiO3 Li ionic conductors. Dalton Trans. 45, 7148–7157 (2016)

    Article  Google Scholar 

  26. Y. Harada, T. Ishigaki, H. Kawai, J. Kuwano, Lithium ion conductivity of polycrystalline perovskite La0.67–xLi3xTiO3 with ordered and disordered arrangements of the A-site ions. Solid State Ion. 108, 407–413 (1998)

    Article  CAS  Google Scholar 

  27. R.L. Withers, L. Bourgeois, A. Snashall, Y. Liu, L. Norén, C. Dwyer, J. Etheridge, Chessboard/diamond nanostructures and the A-site deficient, Li1/2-3xNd1/2+xTiO3, defect perovskite solid solution. Chem. Mater. 25, 190–201 (2013)

    Article  CAS  Google Scholar 

  28. T. Hoshina, R. Sase, J. Nishiyama, H. Takeda, T. Tsurumi, Effect of oxygen vacancies on intrinsic dielectric permittivity of strontium titanate ceramics. J. Cram Soc. Jpn. 126, 263–268 (2018)

    Article  CAS  Google Scholar 

  29. C.W. Tai, S.H. Choy, H.L.W. Chan, Ferroelectric domain morphology evolution and octahedral tilting in lead-free (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–(Bi1/2Li1/2)TiO3–BaTiO3 Ceramics at different temperatures. J. Am. Ceram. Soc. 91, 3335–3341 (2008)

    Article  CAS  Google Scholar 

  30. X. Yang, J. Fu, C. Jin, J. Chen, C. Liang, M. Wu, W. Zhou, Formation mechanism of CaTiO3 hollow crystals with different microstructures. J. Am. Chem. Soc. 132, 14279–14287 (2010)

    Article  CAS  Google Scholar 

  31. S. Adireddy, C. Lin, B. Cao, W. Zhou, G. Caruntu, Solution-based growth of Monodisperse cube-like BaTiO3 Colloidal Nanocrystals. Chem. Mater. 22, 1946–1948 (2010)

    Article  CAS  Google Scholar 

  32. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348–366 (1993)

    Article  CAS  Google Scholar 

  33. E.S. Kim, B.S. Chun, D.W. Yoo, K.H. Yoon, Microwave dielectric properties of (1-x)(Ca0.7Nd0.2)TiO3-x(Li0.5Nd0.5)TiO3 ceramics. Mat. Sci. Eng. B 99, 247–251 (2003)

    Article  Google Scholar 

  34. N. Brese, M. O’keeffe, Bond-valence parameters for solids. Acta Crystallogr., Sect. B: Struct. Sci. 47, 192–197 (1991)

    Article  Google Scholar 

  35. M.I.A.E. Kroumova, J.M. Perez-Mato, A. Kirov, C. Capillas, S. Ivantchev, H. Wondratschek, Bilbao Crystallographic server: useful databases and tools for phase-transition studies. Phase Transit. 76, 155–170 (2003)

    Article  CAS  Google Scholar 

  36. D. Zhang, H. Hao, Y. Luo, Z. Yao, M. Cao, H. Liu, Effect of ZnO doping on the microstructure and microwave dielectric properties of 0.2CaTiO3-0.8(Li0.5Sm0.5)TiO3 ceramics. Ceram. Int. 48, 22726–22732 (2022)

    Article  CAS  Google Scholar 

  37. Z. Xiong, B. Tang, Z. Fang, C. Yang, S. Zhang, Crystal structure, Raman spectroscopy and microwave dielectric properties of Ba3.75Nd9.5Ti18-z(Al1/2Nb1/2)zO54 ceramics. J. Alloy Compd. 723, 580–588 (2017)

    Article  CAS  Google Scholar 

  38. H. Zheng, I.M. Reaney, D. Muir, T. Price, D.M. Iddles, Effect of glass additions on the sintering and microwave properties of composite dielectric ceramics based on BaO–Ln2O3–TiO2 (ln = nd, La). J. Eur. Ceram. Soc. 27, 4479–4487 (2007)

    Article  CAS  Google Scholar 

  39. S. Chen, L. Li, S. Yu, H. Zheng, Z. Sun, High dielectric constant and high-Q in microwave ceramics of SrTiO3 co-doped with aluminum and niobium. J. Am. Ceram. Soc. 101, 1835–1840 (2018)

    Article  CAS  Google Scholar 

  40. Z. Xiong, X. Zhang, W. Wu, L. Li, B. Tang, Preparation and characterization of the temperature-stable CaO-Li2O-Nd2O3-TiO2 microwave dielectric ceramics. J. Mater. Sci. Mater. Electron. 34, 610 (2023)

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Key Research and Development Program of Sichuan Province (Grant No. 2022YFG0226) and the Scientific Research Foundation of CUIT (Grant No. KYTZ202179).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. JM and YX: Material preparation, data collection and analysis were performed. JM: The first draft of the manuscript was written and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhe Xiong.

Ethics declarations

Conflict of interest

All authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Xiong, Y., Zhang, X. et al. Studies of phase transitions, Raman spectra and microwave dielectric properties of perovskite-structured (Na1−xLix)0.5Nd0.5TiO3 ceramics. J Mater Sci: Mater Electron 34, 1039 (2023). https://doi.org/10.1007/s10854-023-10472-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10472-0

Navigation