Skip to main content
Log in

Effect of synthesis temperatures on the composition, microstructure, and microwave absorption properties of titanium nitride porous nanofibers prepared using ammonia reduction nitridation process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In order to reveal the effect of synthesis temperatures on the capacity in tailoring the composition and morphology of titanium nitride nanofibers and their microwave absorption properties, the titanium nitride nanofibers have been prepared by the electrospinning method combined with ammonia reduction nitriding process in the present work. The composition and microstructure of titanium nitride nanofibers synthesized at different reduction nitriding temperatures were investigated and their microwave absorption properties were measured. It was found that the phase of as-prepared nanofibers translated from TiO2 to TiN with the increase of reduction nitriding temperature. Meanwhile, the XRD, XPS, and EDS results demonstrated that the residual oxygen element still existed in the form of TiNxO1−x solid solution, which is beneficial to the improvement of impedance matching and interface polarization. The nitrogen content increased and the oxygen content decreased gradually with the increase of reduction nitriding temperature. The SEM and HRTEM results showed that the as-prepared nanofibers were accumulated by titanium nitride crystal particles, resulting in the formation of a large number of pores. The composition and microstructure of as-prepared titanium nitride nanofibers varied with the reduction nitriding temperature, which could provide the outstanding conductivity loss, Debye relaxation, multiple reflections and scatterings, and suitable impedance matching. As a result, the reflection loss value of as-prepared titanium nitride nanofibers decreased as the reduction nitriding temperature increased from 600 to 900 °C. Hereby, the microwave-absorbing properties of TiN nanofibers could be regulated via reduction nitriding reaction temperature and the optimal reflection loss value of TiN nanofibers was − 46.7 dB with matching layer thickness of 1.04 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Y.M. Feng, T.T. Li, K.Y. Ge, X.Y. Wang, G.W. Wen, J.R. Ye, L. Xia, Impedance matching strategy boost excellent wave absorption performance of zinc-Aluminosilicate cladded short carbon fiber core-sheath structure. Mater. Res. Bull. 153, 111872 (2022). https://doi.org/10.1016/j.materresbull.2022.111872

    Article  CAS  Google Scholar 

  2. G. Sriramulu, N. Maramu, B.R. Reddy, A. Kandasami, S. Katlakunta, Structural, magnetic and electromagnetic properties of microwave-hydrothermally synthesized Sr(Zr-Mn)2xFe12–2xO19 hexaferrites. Mater. Res. Bull. 149, 111732 (2022). https://doi.org/10.1016/j.materresbull.2022.111732

    Article  CAS  Google Scholar 

  3. I. Abdalla, A. Elhassan, J. Yu, Z. Li, B. Ding, A hybrid comprised of porous carbon nanofibers and rGO for efficient electromagnetic wave absorption. Carbon 157, 703–713 (2020). https://doi.org/10.1016/j.carbon.2019.11.004

    Article  CAS  Google Scholar 

  4. J. Guo, Z. Chen, X. Xu, X. Li, H. Liu, S. Xi, W. Abdul, Q. Wu, P. Zhang, B.B. Xu, J. Zhu, Z. Guo, Enhanced electromagnetic wave absorption of engineered epoxy nanocomposites with the assistance of polyaniline fillers. Adv. Compos. Hybrid Mater. 5, 1769–1777 (2022). https://doi.org/10.1007/s42114-022-00417-2

    Article  CAS  Google Scholar 

  5. P. Xu, J. Fang, H. He, X. Yue, In situ growth of globular MnO2 nanoflowers inside hierarchical porous mangosteen shells-derived carbon for efficient electromagnetic wave absorber. J. Alloys Compd. 903, 163826 (2022). https://doi.org/10.1016/j.jallcom.2022.163826

    Article  CAS  Google Scholar 

  6. R. Tang, P. Xu, J. Dong, H. Gui, T. Zhang, Y. Ding, V. Murugadoss, N. Naik, D. Pan, M. Huang, Z. Guo, Carbon foams derived from emulsion-templated porous polymeric composites for electromagnetic interference shielding. Carbon 188, 492–502 (2022). https://doi.org/10.1016/j.carbon.2021.12.026

    Article  CAS  Google Scholar 

  7. Y. Wei, Y.P. Shi, X.F. Zhang, Z.Y. Jiang, Y.H. Zhang, L. Zhang, J.W. Zhang, C.H. Gong, Electrospinning of lightweight TiN fibers with superior microwave absorption. J. Mater. Sci. 5, 503–541 (2019). https://doi.org/10.1007/s10854-019-01823-x

    Article  CAS  Google Scholar 

  8. Y. Wei, L. Zhang, C.H. Gong, S. Liu, M. Zhang, Y. Shi, J. Zhang, Fabrication of TiN/Carbon nanofibers by electrospinning and their electromagnetic wave absorption properties. J. Alloys Compd. 735, 1488–1493 (2018). https://doi.org/10.1016/j.jallcom.2017.11.295

    Article  CAS  Google Scholar 

  9. R. Liu, N. Lun, Y.X. Qi, Y.J. Bai, H.L. Zhu, F.D. Han, X.L. Meng, J.Q. Bi, R.H. Fan, Microwave absorption properties of TiN nanoparticles. J. Alloys Compd. 509, 10032–10035 (2011). https://doi.org/10.1016/j.jallcom.2011.08.022

    Article  CAS  Google Scholar 

  10. Y.P. Shi, D. Li, H.X. Si, Z.Y. Jiang, M.Y. Li, C.H. Gong, TiN/BN composite with excellent thermal stability for efficiency microwave absorption in wide temperature spectrum. J. Mater. Sci. Technol. 130, 249–255 (2022). https://doi.org/10.1016/j.jmst.2022.04.050

    Article  Google Scholar 

  11. X.Y. Hong, Q. Wang, Z.H. Tang, W.Q. Khan, D.W. Zhou, T.F. Feng, Synthesis and electromagnetic absorbing properties of titanium carbonitride with quantificational carbon doping. J. Phys. Chem. C 120, 148–156 (2016). https://doi.org/10.1021/acs.jpcc.5b11000

    Article  CAS  Google Scholar 

  12. C. Yan, X.Q. Cheng, Y. Zhang, D.Z. Yin, C.H. Gong, L.G. Yu, J.W. Zhang, Z.J. Zhang, Ferromagnetism and microwave electromagnetism of iron-doped titanium nitride nanocrystals. J. Phys. Chem. C 116, 26006–26012 (2012). https://doi.org/10.1021/jp306305m

    Article  CAS  Google Scholar 

  13. Y. Wei, Y.P. Shi, Z.Y. Jiang, X.F. Zhang, H.H. Chen, Y.H. Zhang, J.W. Zhang, C.H. Gong, High performance and lightweight electromagnetic wave absorbers based on TiN/RGO flakes. J. Alloys Compd. 810, 151950 (2019). https://doi.org/10.1016/j.jallcom.2019.151950

    Article  CAS  Google Scholar 

  14. C.P. Li, D. Li, L. Zhang, Y.H. Zhang, L. Zhang, C.H. Gong, J.W. Zhang, Boosted microwave absorption performance of transition metal doped TiN fibers at elevated temperature. Nano Res. 16, 3570–3579 (2023). https://doi.org/10.1007/s12274-023-5398-3

    Article  CAS  Google Scholar 

  15. S.D. Liu, X.W. Meng, Z.Z. Wang, Z.H. Li, K. Yang, Enhancing microwave absorption by constructing core/shell TiN@TiO2 heterostructures through post-oxidation annealing. Mater. Lett. 257, 126677 (2019). https://doi.org/10.1016/j.matlet.2019.126677

    Article  CAS  Google Scholar 

  16. G. Mangamma, P.K. Ajikumar, R. Nithya, T.N. Sairam, V.K. Mittal, M. Kamruddin, S. Dash, A.K. Tyagi, Synthesis and gas phase nitridation of nanocrystalline TiO2. J. Phys. D 40, 4597–4602 (2007). https://doi.org/10.1088/0022-3727/40/15/035

    Article  CAS  Google Scholar 

  17. Y.J. Liu, Y. Wang, Y. Zhang, Z.X. You, X.W. Lv, Mechanism on reduction and nitridation of micrometer-sized titania with ammonia gas. J. Am. Ceram. Soc. 103, 3905–3916 (2020). https://doi.org/10.1111/jace.17067

    Article  CAS  Google Scholar 

  18. Y. Cui, K.Z. Xu, B. Zhu, S.L. Hu, Y.J. Chen, D.F. Lv, Y. Yu, J.L. Bu, H.Y. Wei, B. Liang, Synthesis of niobium nitride porous nanofibers with excellent microwave absorption properties via reduction nitridation of electrospinning precursor nanofibers with ammonia gas. J. Alloys Compd. 907, 164453 (2022). https://doi.org/10.1016/j.jallcom.2022.164453

    Article  CAS  Google Scholar 

  19. C.H. Gong, H.J. Meng, X.W. Zhao, X.F. Zhang, L.G. Yu, J.W. Zhang, Z.J. Zhang, Unique static magnetic and dynamic electromagnetic behaviors in titanium nitride/carbon composites driven by defect engineering. Sci. Rep. 6, 18927–18927 (2016). https://doi.org/10.1038/srep18927

    Article  CAS  Google Scholar 

  20. B. Zhu, Y. Cui, D.F. Lv, K.Z. Xu, Y.J. Chen, Y.N. Wei, H.Y. Wei, J.L. Bu, Synthesis of setaria viridis-like TiN fibers for efficient broadband electromagnetic wave absorption in the whole X and Ku bands. Appl. Surf. Sci. 533, 147439 (2020). https://doi.org/10.1016/j.apsusc.2020.147439

    Article  CAS  Google Scholar 

  21. J. Ni, Y.J. Chen, D.F. Lv, L.F. Zhang, S. Cui, Y. Cui, H.Y. Wei, J.L. Bu, Reduction nitride evolution and electrochemical properties of mesoporous titanium nitride powder. Rare. Metal. Mater. Eng. 50, 4402–4409 (2021)

    CAS  Google Scholar 

  22. X. Mao, Y. Bai, J.Y. Yu, B. Ding, Insights into the flexibility of ZrMxOy (M=Na, Mg, Al) nanofibrous membranes as promising infrared stealth materials. Dalton. Trans. 45, 6660–6666 (2016). https://doi.org/10.1039/c6dt00319b

    Article  CAS  Google Scholar 

  23. F.Q. Guo, X.C. Jiang, X.P. Jia, S. Liang, L. Qian, Z.H. Rao, Synthesis of biomass carbon electrode materials by bimetallic activation for the application in supercapacitors. J. Electroanal. Chem. 844, 105–115 (2019). https://doi.org/10.1016/j.jelechem.2019.05.004

    Article  CAS  Google Scholar 

  24. S. Yang, S.L. Wang, X. Liu, L. Li, Biomass derived interconnected hierarchical micro-meso-macro- porous carbon with ultrahigh capacitance for supercapacitor. Carbon 147, 540–549 (2019). https://doi.org/10.1016/j.carbon.2019.03.023

    Article  CAS  Google Scholar 

  25. S. Rehman, J.M. Wang, Q.H. Luo, M.Z. Sun, L. Jiang, Q. Han, J.C. Liu, H. Bi, Starfish-like C/CoNiO2 heterostructure derived from ZIF-67 with tunable microwave absorption properties. Chem. Eng. J. 373, 122–130 (2019). https://doi.org/10.1016/j.cej.2019.05.040

    Article  CAS  Google Scholar 

  26. B. Zhu, Y. Cui, D.F. Lv, P. Liu, H.Y. Wei, J.L. Bu, Synthesis and electromagnetic wave absorption properties of peanut shell-like SiC fibers. Mater. Lett. 263, 127288 (2020). https://doi.org/10.1016/j.matlet.2019.127288

    Article  CAS  Google Scholar 

  27. Y.N. Li, Y. Zhao, X.Y. Lu, Y. Zhu, L. Jiang, Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole fiber with core–sheath structures for superior microwave absorption. Nano Res. 9, 2034–2045 (2016). https://doi.org/10.1007/s12274-016-1094-x

    Article  CAS  Google Scholar 

  28. S. Dong, W.Z. Zhang, X.H. Zhang, P. Hu, J.C. Han, Designable synthesis of core-shell SiCw@C heterostructures with thickness dependent electromagnetic wave absorption between the whole X-band and Ku-band. Chem. Eng. J. 354, 767–776 (2018). https://doi.org/10.1016/j.cej.2018.08.062

    Article  CAS  Google Scholar 

  29. M.M. Zhang, Z.Y. Jiang, X.Y. Lv, X.F. Zhang, Y.H. Zhang, J.W. Zhang, L. Zhang, C.H. Gong, Microwave absorption performance of reduced graphene oxide with negative imaginary permeability. J. Phys. D 53, 02LT01 (2020). https://doi.org/10.1088/1361-6463/ab48a7

    Article  CAS  Google Scholar 

  30. Y.H. Zhang, H.X. Si, S.C. Liu, Z.Y. Jiang, J.W. Zhang, C.H. Gong, Facile synthesis of BN/Ni nanocomposites for effective regulation of microwave absorption performance. J. Alloys Compd. 850, 156680 (2021). https://doi.org/10.1016/j.jallcom.2020.156680

    Article  CAS  Google Scholar 

  31. J. Cheng, H.P. Li, S.Y. Huang, W. Pan, Electrical behavior of nonstoichiometric TiN1+x nanofibers by electrospinning. J. Am. Ceram. Soc. 97, 2372–2375 (2014). https://doi.org/10.1111/jace.13049

    Article  CAS  Google Scholar 

  32. Z. Ren, W. Zhou, Y. Qing, S. Duan, H. Pan, Y. Zhou, Improved mechanical and microwave absorption properties of SiCf/SiC composites with SiO2 filler. Ceram. Int. 47, 14455–14463 (2021). https://doi.org/10.1016/j.ceramint.2021.02.024

    Article  CAS  Google Scholar 

  33. T. Xia, C. Zhang, N.A. Oyler, X.B. Chen, Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. Adv. Mater. 25, 6905–6910 (2013). https://doi.org/10.1002/adma.201303088

    Article  CAS  Google Scholar 

  34. J.L. Xu, X.S. Qi, C.Z. Luo, J. Qiao, R. Xie, Y. Sun, W. Zhong, Q. Fu, C.X. Pan, Synthesis and enhanced microwave absorption properties: a strongly hydrogenated TiO2 nanomaterial. Nanotechnology 28, 425701 (2017). https://doi.org/10.1088/1361-6528/aa81ba

    Article  CAS  Google Scholar 

  35. P. Wang, L.F. Cheng, L.T. Zhang, Lightweight, flexible SiCN ceramic nanowires applied as effective microwave absorbers in high frequency. Chem. Eng. J. 338, 248–260 (2018). https://doi.org/10.1016/j.cej.2017.12.008

    Article  CAS  Google Scholar 

  36. C.P. Li, Y.Q. Ge, X.H. Jiang, Z.M. Zhang, L.M. Yu, The rambutan-like C@NiCo2O4 composites for enhanced microwave absorption performance. J. Mater. Sci. 30, 3124–3136 (2019). https://doi.org/10.1007/s10854-018-00592-3

    Article  CAS  Google Scholar 

  37. J.L. Kuang, Q. Qin, T. Xiao, X.J. Hou, P. Jiang, Q. Wang, W.B. Cao, Tunable dielectric permittivity and microwave absorption properties of Pt-decorated SiC nanowires prepared by magnetic sputtering. Mater. Lett. 245, 90–93 (2019). https://doi.org/10.1016/j.matlet.2019.02.099

    Article  CAS  Google Scholar 

  38. S.O. Kasap, Principles of Electronic Materials and Devices, 3rd edn. (McGraw-Hill, New York, 2006)

    Google Scholar 

  39. K. Asami, Characterization of heterogeneous systems by dielectric spectroscopy. Prog. Polym. Sci. 27, 1617–1659 (2002). https://doi.org/10.1016/S0079-6700(02)00015-1

    Article  CAS  Google Scholar 

  40. M.Z. Liu, J.S. Chen, B.C. Li, B. Wang, Q. Han, S.C. Wei, K.R. Liu, X.C. He, Preparation of microcrystalline graphite/zinc ferrite composites with enhanced and tunable electromagnetic wave absorption using a high-temperature ball milling method. Mater. Res. Bull. 161, 112170 (2023). https://doi.org/10.1016/j.materresbull.2023.112170

    Article  CAS  Google Scholar 

  41. H.W. Zhen, H.G. Wang, X.L. Xu, Preparation of porous carbon nanofibers with remarkable microwave absorption performance through electrospinning. Mater. Lett. 249, 210–213 (2019). https://doi.org/10.1016/j.matlet.2019.04.044

    Article  CAS  Google Scholar 

  42. Z. Ma, C.T. Cao, Q.F. Liu, J.B. Wang, A new method to calculate electromagnetic impedance matching degree in one-layer microwave absorbers. Chin. Phys. Lett. 29, 038401 (2012). https://doi.org/10.1088/0256-307X/29/3/038401

    Article  CAS  Google Scholar 

  43. D.W. Liu, Y.C. Du, Z.N. Li, Y.H. Wang, P. Xu, H.H. Zhao, F.Y. Wang, C.L. Li, X.J. Han, Facile synthesis of 3D flower-like Ni microspheres with enhanced microwave absorption properties. J. Mater. Chem. C 6, 9615 (2018). https://doi.org/10.1039/C8TC02931H

    Article  CAS  Google Scholar 

  44. M.T. Qiao, X.F. Lei, Y. Ma, L.D. Tian, X.W. He, K.H. Su, Q.Y. Zhang, Application of yolk-shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 11, 1500–1519 (2018). https://doi.org/10.1007/s12274-017-1767-0

    Article  CAS  Google Scholar 

  45. L.R. Cui, C.H. Tian, L.L. Tang, X.J. Han, Y.H. Wang, D.W. Liu, P. Xu, C.L. Li, Y.C. Du, Space-confined synthesis of core-shell BaTiO3@Carbon microspheres as a high-performance binary dielectric system for microwave absorption. ACS Appl. Mater. Interfaces 34, 31182–31190 (2019). https://doi.org/10.1021/acsami.9b09779

    Article  CAS  Google Scholar 

  46. B.J.W. Wang, B.B. Wang, A.L. Feng, Z.R. Jia, G.L. Wu, Design of morphology-controlled and excellent electromagnetic wave absorption performance of sheet-shaped ZnCo2O4 with a special arrangement. J. Alloys Compd. 834, 155092 (2020). https://doi.org/10.1016/j.jallcom.2020.155092

    Article  CAS  Google Scholar 

  47. S.S. Kim, D.H. Han, S.B. Cho, Microwave absorbing properties of sintered Ni-Zn ferrite. IEEE Trans. Magn. 30, 4554–4556 (1994). https://doi.org/10.1109/20.334146

    Article  CAS  Google Scholar 

  48. Y. Liu, Z. Chen, W.H. Xie, S.K. Song, Y. Zhang, L.J. Dong, In-situ growth and graphitization synthesis of porous Fe3O4/Carbon fiber composites derived from biomass as lightweight microwave absorber. ACS Sustain. Chem. Eng. 7, 53185328 (2019). https://doi.org/10.1021/acssuschemeng.8b06339

    Article  CAS  Google Scholar 

  49. J. Liu, M.S. Cao, Q. Luo, H.L. Shi, W.Z. Wang, J. Yuan, Electromagnetic property and tunable microwave absorption of 3d nets from nickel chains at elevated temperature. ACS Appl. Mater. Interfaces 8, 22615–22622 (2016). https://doi.org/10.1021/acsami.6b05480

    Article  CAS  Google Scholar 

  50. Z.Z. Shen, J.H. Chen, B. Li, G.Q. Li, Z.J. Zhang, X.M. Hou, Recent progress in SiC nanowires as electromagnetic microwaves absorbing materials. J. Alloys Compd. 815, 152388 (2020). https://doi.org/10.1016/j.jallcom.2019.152388

    Article  CAS  Google Scholar 

  51. J.L. Kuang, T. Xiao, X.J. Hou, Q.F. Zheng, Q. Wang, P. Jiang, W.B. Cao, Microwave synthesis of worm-like SiC nanowires for thin electromagnetic wave absorbing materials. Ceram. Int. 45, 11660–11667 (2019). https://doi.org/10.1016/j.ceramint.2019.03.040

    Article  CAS  Google Scholar 

  52. D.W. Liu, Y.C. Du, P. Xu, N. Liu, Y.H. Wang, H.H. Zhao, L.R. Cui, X.J. Han, Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption. J. Mater. Chem. C 7, 5037 (2019). https://doi.org/10.1039/C9TC00771G

    Article  CAS  Google Scholar 

  53. Y.H. Wang, X.J. Han, P. Xu, D.W. Liu, L.R. Cui, H.H. Zhao, Y.C. Du, Synthesis of pomegranate-like Mo2C@C nanospheres for highly efficient microwave absorption. Chem. Eng. J. 372, 312–320 (2019). https://doi.org/10.1016/j.cej.2019.04.153

    Article  CAS  Google Scholar 

  54. X.L. Su, J. Zhang, Y. Jia, Y. Liu, J. Xu, J.B. Wang, Preparation and microwave absorption property of nano onion-like carbon in the frequency range of 8.2–12.4 GHz. J. Alloys Compd. 695, 1420–1425 (2017). https://doi.org/10.1016/j.jallcom.2016.10.269

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by Hebei Natural Science Foundation (Grant Numbers E2021209120 and E2022209067).

Author information

Authors and Affiliations

Authors

Contributions

YC contributed to conceptualization, synthesis, performance testing, and writing-original draft. CL contributed to investigation, methodology, and synthesis. RL contributed to synthesis, performance testing, and writing—review. YW contributed to resources and formal analysis. DL contributed to formal analysis and performance testing. JB contributed to eesources and formal analysis. HW contributed to investigation, synthesis, and performance testing. BL contributed to idea and design of this research and writing- original draft & review & editing. Investigation, Synthesis, Performance testing.

Corresponding author

Correspondence to Bo Liang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Li, C., Li, R. et al. Effect of synthesis temperatures on the composition, microstructure, and microwave absorption properties of titanium nitride porous nanofibers prepared using ammonia reduction nitridation process. J Mater Sci: Mater Electron 34, 1036 (2023). https://doi.org/10.1007/s10854-023-10471-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10471-1

Navigation