Skip to main content
Log in

Development of eco-friendly corrosion-resistant boron carbide coating from natural carbon precursor for electronic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The development of boron carbide films is of greater importance in the electronic industry as it finds application in producing high-performance field-effect transistors and capacitors besides its application as an anti-corrosion coating material in electronic devices. The manuscript explores the possibility of developing green synthesized boron carbide coating for corrosion resistance. Hydrothermally synthesized boron carbide and RF sputtered thin film samples are subjected to morphological and structure characterizations. The corrosion studies under the electric field and weight loss method reveal good corrosion resistance and reinforcement action in the mild steel plate with boron carbide coating. The contact angle study shows the hydrophobic nature of the coating. The study unveils the potential of green synthesized boron carbide for developing thin films for electronic and corrosion resistance applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

It is not applicable as no new data is generated.

References

  1. M. Chigondo, F. Chigondo, J. Chem. 2016, 1 (2016). https://doi.org/10.1155/2016/6208937

    Article  Google Scholar 

  2. A. Hamdy, N.S. El-Gendy, Egypt. J. Pet. 22, 17 (2013). https://doi.org/10.1016/j.ejpe.2012.06.002

    Article  Google Scholar 

  3. J. Wang, Y. He, Z. Xie, C. Chen, Q. Yang, C. Zhang, B. Wang, Y. Zhan, T. Zhao, Polym. Adv. Technol. 29, 758 (2018). https://doi.org/10.1002/pat.4181

    Article  CAS  Google Scholar 

  4. A.A. Ayoola, O.S.I. Fayomi, A.P.I. Popoola, Def. Technol. 15, 106 (2019).https://doi.org/10.1016/j.dt.2018.04.008

    Article  Google Scholar 

  5. S. Satpal, A. Bhopale, P. Deshpande, A. Athawale, J. Appl. Polym. Sci. 137, 48319 (2020). https://doi.org/10.1002/app.48319

    Article  CAS  Google Scholar 

  6. M. Büchler, Corrosion 76, 451 (2020). https://doi.org/10.5006/3379

    Article  CAS  Google Scholar 

  7. S. Viswanathan, Saji, R. Cook (eds.), Corrosion Protection and Control Using Nanomaterials (Woodhead Publishing Limited, Cambridge, UK, 2012)

    Google Scholar 

  8. J.R. Ch, E. Vetrivendan, B. Madhura, S. Ningshen, J. Nucl. Mater. 540, 152354 (2020). https://doi.org/10.1016/j.jnucmat.2020.152354

    Article  CAS  Google Scholar 

  9. J.B. Wachtman, R.A. Haber, Ceramic  Films and Coatings (Noyes Publications, USA, 1993)

    Google Scholar 

  10. A.W. Weimer, Carbide, Nitride and Boride Materials Synthesis and Processing (Chapman and Hall, London, 1997)

    Book  Google Scholar 

  11. F. Thévenot, J. Eur. Ceram. Soc. 6, 205 (1990). https://doi.org/10.1016/0955-2219(90)90048-K

    Article  Google Scholar 

  12. S.-D. Hwang, D. Byun, N.J. Ianno, P.A. Dowben, Appl. Phys. Lett. 68, 1495 (1996). https://doi.org/10.1063/1.116266

    Article  Google Scholar 

  13. P.A. Dowben, Boron-Carbide and Boron Rich Rhobohedral based transistors and tunnel diodes, vol. 73 (Peter Dowben Publications, lincoln, 2002)

    Google Scholar 

  14. A. Majdi, A.K. Wadday, Z.S. Abbas, M.M. Kadhim, A.M. Rheima, M. Barzan, L.H. Al-attia, S.K. Hachim, M.A. Hadi, Inorg. Chem. Commun 150, 110480 (2023). https://doi.org/10.1016/j.inoche.2023.110480

    Article  CAS  Google Scholar 

  15. S. Avcıo˘glu, M. Buldu-Akturk, E. Erdem, F. Kaya, C. Kaya, Materials 16, 861 (2023). https://doi.org/10.3390/ma16020861

    Article  CAS  Google Scholar 

  16. Y. Chena, Y.-W. Chunga, S.-Y. Li, Surf. Coat. Technol 200, 4072 (2006). https://doi.org/10.1016/j.surfcoat.2005.02.164

    Article  CAS  Google Scholar 

  17. A.M. Alsaad, A.B. Migdadi, A.A. Ahmad, Q.M. Al-Bataineh, A. Telfah, J. Mater. Sci. 58, 2634 (2023). https://doi.org/10.1007/s10853-023-08204-0

    Article  CAS  Google Scholar 

  18. P.V. Kumar, G.M. Reddy, K.S. Rao, Def. Technol. 11, 166 (2015). https://doi.org/10.1016/j.dt.2015.01.002

    Article  Google Scholar 

  19. K.S. Sridhar Raja, V.K. Bupesh Raja, ARPN J. Eng. AppliedSciences 10, 10392 (2015) ISSN 1819–6608.

    Google Scholar 

  20. H. Ding, L.H. Hihara, J. Electrochem. Soc. 158, C118 (2011). https://doi.org/10.1149/1.3567519

    Article  CAS  Google Scholar 

  21. X. Cao, J. Wang, Y. Liang, G. Zhang, L. Shang, Z. Lu, Q. Xue, Mater. Today Commun. 23, 100924 (2020). https://doi.org/10.1016/j.mtcomm.2020.100924

    Article  CAS  Google Scholar 

  22. P. Zhong, X. Cao, L. Shang, Metals 11, 1518 (2021). https://doi.org/10.3390/met11101518

    Article  CAS  Google Scholar 

  23. L. Benea, Solid State Ionics 151, 89 (2002). https://doi.org/10.1016/S0167-2738(02)00586-6

    Article  CAS  Google Scholar 

  24. M. Ma, H. Ma, Z. Wang, S. Zhang, S. Bian, X. Wang, Y. Chen, Surf. Eng. 37, 188 (2021). https://doi.org/10.1080/02670844.2019.1660490

    Article  CAS  Google Scholar 

  25. R. Zandi Zand, K. Verbeken, A. Adriaens, Prog Org. Coat. 72, 709 (2011). https://doi.org/10.1016/j.porgcoat.2011.08.001

    Article  CAS  Google Scholar 

  26. G.H. Rafi-ud-din, E. Zahid, M. Ahmad, T. Maqbool, W.A. Subhani, Syed, S.Z. Hussain, J. Inorg. Organomet. Polym. Mater. 25, 995 (2015). https://doi.org/10.1007/s10904-015-0181-x

    Article  CAS  Google Scholar 

  27. H. V. SarithaDevi, M.S. Swapna, G. Ambadas, S. Sankararaman, Chin. Phys B 27, 107702 (2018). https://doi.org/10.1088/1674-1056/27/10/107702

    Article  CAS  Google Scholar 

  28. H.V. Saritha Devi, M.S. Swapna, G. Ambadas, S. Sankararaman, Appl. Phys. A 124, 297 (2018). https://doi.org/10.1007/s00339-018-1733-z

    Article  CAS  Google Scholar 

  29. J.L. Watts, P.C. Talbot, J.A. Alarco, I.D.R. Mackinnon, Ceram. Int. 43, 2650 (2017). https://doi.org/10.1016/j.ceramint.2016.11.076

    Article  CAS  Google Scholar 

  30. M. Kakiage, N. Tahara, I. Yanase, H. Kobayashi, Mater. Lett. 65, 1839 (2011). https://doi.org/10.1016/j.matlet.2011.03.046

    Article  CAS  Google Scholar 

  31. M.S. Swapna, H.V. Saritha Devi, S. Sankararaman, J. Korean Ceram. Soc. 57, 651–657 (2020). https://doi.org/10.1007/s43207-020-00066-5

    Article  CAS  Google Scholar 

  32. H.V. Saritha Devi, M.S. Swapna, G. Ambadas, S. Sankararaman, J. Appl. Phys. 124, 065303 (2018). https://doi.org/10.1063/1.5040681

    Article  CAS  Google Scholar 

  33. Z. Wang, X. Zhang, X. Liu, Y. Zhang, W. Zhao, Y. Li, C. Qin, Z. Bakenov, J. Colloid Interface Sci 569, 22 (2020). https://doi.org/10.1016/j.jcis.2020.02.062

    Article  CAS  Google Scholar 

  34. B.-B. Ma, S.-J. Chen, Y.-W. Huang, Z.-Z. Nie, X.-B. Qiu, X.-Q. Xie, Z.-J. Wu, Trans. Nonferrous Met. Soc. China 31, 255 (2021). https://doi.org/10.1016/S1003-6326(21)65492-4

    Article  Google Scholar 

  35. M. Zhou, Q. Wang, Y. Yuan, S.-H. Luo, Y.-H. Zhang, X. Liu, Rare Met. 40, 3166 (2021). https://doi.org/10.1007/s12598-021-01775-4

    Article  CAS  Google Scholar 

  36. H.V. Saritha Devi, M.S. Swapna, V. Raj, G. Ambadas, S. Sankararaman, Mater. Res. Express 5, 015603 (2018). https://doi.org/10.1088/2053-1591/aaa367

    Article  CAS  Google Scholar 

  37. X. Li, D. Jiang, J. Zhang, Q. Lin, Z. Chen, Z. Huang, J. Eur. Ceram. Soc. 33, 1655–1663 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.02.001

    Article  CAS  Google Scholar 

  38. J. Romanos, M. Beckner, D. Stalla, A. Tekeei, G. Suppes, S. Jalisatgi, M. Lee, F. Hawthorne, J.D. Robertson, L. Firlej, B. Kuchta, C. Wexler, P. Yu, P. Pfeifer, Carbon N. Y 54, 208–214 (2013). https://doi.org/10.1016/j.carbon.2012.11.031

    Article  CAS  Google Scholar 

  39. I. Yanase, R. Ogawara, H. Kobayashi, Mater. Lett. 63, 91–93 (2009). https://doi.org/10.1016/j.matlet.2008.09.012

    Article  CAS  Google Scholar 

  40. P. Chandran, S. Bakshi, D. Chatterjee, Chem. Eng. Sci. 138, 99 (2015). https://doi.org/10.1016/j.ces.2015.07.041

    Article  CAS  Google Scholar 

Download references

Funding

The author H.V. Saritha Devi is grateful to Kerala State Council for Science, Technology and Environment (KSCSTE) for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have equally contributed to the literature survey, synthesis, characterization, interpretation and in reporting the result.

Corresponding author

Correspondence to S. Sankararaman.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saritha Devi, H.V., Swapna, M.S. & Sankararaman, S. Development of eco-friendly corrosion-resistant boron carbide coating from natural carbon precursor for electronic applications. J Mater Sci: Mater Electron 34, 1028 (2023). https://doi.org/10.1007/s10854-023-10470-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10470-2

Navigation