Skip to main content

Advertisement

Log in

Solar photocatalytic hydrogen production of g-C3N4/KTaO3 heterojunction for water splitting via interface engineering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Heterojunction construction is a significant method for enhancing the efficiency of electron–hole separation in photocatalysts, and it can be used to construct effective photocatalysts with visible light responses. In this study, g-C3N4 and KTaO3 compounds are prepared using phase sintering and solvothermal methods. Then, the classical self-assembly process produces the KTCN composite photocatalysts. The hydrogen production rate of the KTCN composite photocatalysts (~ 842.7 μmol g−1 h−1) is 4.25 times faster than that of the pure g-C3N4 (198.2 μmol g−1 h−1). The formation of the heterojunction reduces the photon-generated carrier’s recombination rate, thereby improving photocatalytic efficiency. The samples were further investigated by transient photoluminescence spectroscopy. The photoluminescence intensity of the composite photocatalyst was lower than that of g-C3N4, indicating that the electron–hole pair complexation efficiency was significantly reduced. The heterojunction of the composite photocatalyst can significantly enhance the photoexcited interfacial charge transfer and improve carrier–hole separation efficiency. Finally, this research offers an effective method for using composite photocatalysts in photocatalytic hydrogen production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from School of Materials, Guilin University of Electronic Science and Technology, but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. Data are however available from the authors upon reasonable request and with permission of Pro. Changlai Yuan.

References

  1. K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 43, 37–38 (1972)

    Google Scholar 

  2. W. Tang, X. Xue, C. Yuan, J. Chen, L. Miao, Q. Feng, J. Xu, G. Rao, J. Wang, C. Zhou, Y. Guo, J. Mater. Chem. A Mater. 10, 7238–7250 (2022)

    Article  CAS  Google Scholar 

  3. H. Kato, A. Kudo, Chem. Phys. Lett. 295, 487–492 (1998)

    Article  CAS  Google Scholar 

  4. Z. Chen, P. Xing, P. Chen, Q. Chen, Y. Wang, J. Yu, Y. He, Catal. Commun. 109, 6–9 (2018)

    Article  CAS  Google Scholar 

  5. H. Sudrajat, I. Thushari, S. Babel, J. Phys. Chem. Solids 127, 94–100 (2019)

    Article  CAS  Google Scholar 

  6. D. Xu, S. Yang, Y. Jin, M. Chen, W. Fan, B. Luo, W. Shi, Langmuir 31, 9694–9699 (2015)

    Article  CAS  Google Scholar 

  7. C. Meng, K. Zhao, M. Yang, Y. Liang, Spectrochim. Acta A Mol. Biomol. Spectrosc. (2021). https://doi.org/10.1016/j.saa.2020.119352

    Article  Google Scholar 

  8. X.-H. Li, X. Wang, M. Antonietti, Chem. Sci. 3, 2170 (2012)

    Article  CAS  Google Scholar 

  9. X. Wu, J. Cheng, X. Li, Y. Li, K. Lv, Appl. Surf. Sci. 465, 1037–1046 (2019)

    Article  CAS  Google Scholar 

  10. J. Zhao, L. Ma, H. Wang, Y. Zhao, J. Zhang, S. Hu, Appl. Surf. Sci. 332, 625–630 (2015)

    Article  CAS  Google Scholar 

  11. M.E. Khan, T.H. Han, M.M. Khan, M.R. Karim, M.H. Cho, ACS Appl. Nano Mater. 1, 2912–2922 (2018)

    Article  CAS  Google Scholar 

  12. S. Kappadan, S. Thomas, N. Kalarikkal, Chem. Phys. Lett. (2021). https://doi.org/10.1016/j.cplett.2021.138513

    Article  Google Scholar 

  13. J. Yu, Z. Chen, Y. Wang, Y. Ma, Z. Feng, H. Lin, Y. Wu, L. Zhao, Y. He, J. Mater. Sci. 53, 7453–7465 (2018)

    Article  CAS  Google Scholar 

  14. D. Xu, L. Li, T. Xia, W. Fan, F. Wang, H. Bai, W. Shi, Int. J. Hydrogen Energy 43, 16566–16572 (2018)

    Article  CAS  Google Scholar 

  15. Y. Li, X. Xing, J. Pei, R. Li, Y. Wen, S. Cui, T. Liu, Ceram. Int. 46, 12637–12647 (2020)

    Article  CAS  Google Scholar 

  16. L. Di, H. Yang, T. Xian, X. Chen, Mater. Res. (2018). https://doi.org/10.1590/1980-5373-mr-2018-0081

    Article  Google Scholar 

  17. F. Wang, W. Li, S. Gu, H. Li, X. Liu, C. Ren, Catal. Commun. 96, 50–53 (2017)

    Article  CAS  Google Scholar 

  18. M. Lallimathi, P. Kalisamy, M. Suryamathi, T. Alshahrani, M. Shkir, M. Venkatachalam, B. Palanivel, ChemistrySelect 5, 10607–10617 (2020)

    Article  CAS  Google Scholar 

  19. Y. He, Y. Zhu, N. Wu, J. Solid State Chem. 177, 2985–2990 (2004)

    Article  CAS  Google Scholar 

  20. X. Yuan, S. Qu, X. Huang, X. Xue, C. Yuan, S. Wang, L. Wei, P. Cai, Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2021.129148

    Article  Google Scholar 

  21. X. Wang, D. Li, Z. Nan, Sep. Purif. Technol. 224, 152–162 (2019)

    Article  CAS  Google Scholar 

  22. Y. Chen, B. Lin, H. Wang, Y. Yang, H. Zhu, W. Yu, J. Basset, Chem. Eng. J. 286, 339–346 (2016)

    Article  CAS  Google Scholar 

  23. C. Yang, W. Teng, Y. Song, Y. Cui, Chin. J. Catal. 39, 1615–1624 (2018)

    Article  CAS  Google Scholar 

  24. J. Fu, Z. Mo, M. Cheng, F. Xu, Y. Song, X. Ding, Z. Chen, H. Chen, H. Li, H. Xu, Colloids Surf. A Physicochem. Eng. Asp 589, 124397 (2020)

    Article  CAS  Google Scholar 

  25. Z. Mao, J. Chen, Y. Yang, D. Wang, L. Bie, B.D. Fahlman, ACS Appl. Mater. Interfaces 9, 12427–12435 (2017)

    Article  CAS  Google Scholar 

  26. B. Palanivel, C. Hu, M. Shkir, S. Al Faify, F.A. Ibrahim, M.S. Hamdy, A. Mani, Colloids Interface Sci. Commun. (2021). https://doi.org/10.1016/j.colcom.2021.100410

    Article  Google Scholar 

  27. S. Pareek, M. Sharma, S. Lal, J.K. Quamara, J. Mater. Sci.: Mater. Electron. 29, 13043–13051 (2018)

    CAS  Google Scholar 

  28. N. Tian, H. Huang, Y. Zhang, Appl. Surf. Sci. 358, 343–349 (2015)

    Article  CAS  Google Scholar 

  29. P.M. Vilarinho, N. Barroca, S. Zlotnik, P. Félix, M.H. Fernandes, Mater. Sci. Eng. C 39, 395–402 (2014)

    Article  CAS  Google Scholar 

  30. Z. Tong, D. Yang, T. Xiao, Y. Tian, Z. Jiang, Chem. Eng. J. 260, 117–125 (2015)

    Article  CAS  Google Scholar 

  31. Z. Zhang, J. Huang, M. Zhang, Q. Yuan, B. Dong, Appl. Catal. B 163, 298–305 (2015)

    Article  CAS  Google Scholar 

  32. H. Huang, S. Yang, R. Vajtai, X. Wang, P.M. Ajayan, Adv. Mater. 26, 5160–5165 (2014)

    Article  CAS  Google Scholar 

  33. Q. Liang, Z. Li, X. Yu, Z.-H. Huang, F. Kang, Q.-H. Yang, Adv. Mater. 27, 4634–4639 (2015)

    Article  CAS  Google Scholar 

  34. J. Liu, X. Wei, W. Sun, X. Guan, X. Zheng, J. Li, Environ. Res. (2021). https://doi.org/10.1016/j.envres.2021.111136

    Article  Google Scholar 

  35. S. Tonda, S. Kumar, M. Bhardwaj, P. Yadav, S. Ogale, ACS Appl. Mater. Interfaces 10, 2667–2678 (2018)

    Article  CAS  Google Scholar 

  36. C. Leal Marchena, G. Pecchi, L. Pierella, Mol. Catal. 482, 110685 (2020)

    Article  CAS  Google Scholar 

  37. S. Selvarajan, A. Suganthi, M. Rajarajan, Ultrason. Sonochem. 41, 651–660 (2018)

    Article  CAS  Google Scholar 

  38. S. Dong, G.J. Lee, R. Zhou, J.J. Wu, Sep. Purif. Technol. (2020). https://doi.org/10.1016/j.seppur.2020.117202

    Article  Google Scholar 

  39. Y. Lan, Z. Sun, C. Yuan, X. Xue, J. Chen, L. Miao, Y. Guo, C. Zhou, J. Xu, J. Zhou, J. Wang, G. Rao, ACS Appl. Mater. Interfaces 14, 8916–8930 (2022)

    Article  CAS  Google Scholar 

  40. H. Shi, G. Chen, C. Zhang, Z. Zou, ACS Catal. 4, 3637–3643 (2014)

    Article  CAS  Google Scholar 

  41. H. Xu, J. Yan, Y. Xu, Y. Song, H. Li, J. Xia, C. Huang, H. Wan, Appl. Catal. B 129, 182–193 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Natural Science Foundation of Guangxi Province (2021GXNSFAA220029), Foundation for Guangxi Bagui scholars, and the Guangxi Key Laboratory of Information Materials (191026-Z).

Author information

Authors and Affiliations

Authors

Contributions

JL implemented the research scheme and wrote the manuscript. KS provided provided some help during the experiment. CY reviewed and edited the article. XL reviewed and edited the article. TZ reviewed and edited the article. JX reviewed and edited the article. BZ reviewed and edited the article. CZ reviewed and edited the article. GR reviewed and edited the article.

Corresponding authors

Correspondence to Changlai Yuan, Baohua Zhu or Guanghui Rao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies involving humans and animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yuan, C., Liu, X. et al. Solar photocatalytic hydrogen production of g-C3N4/KTaO3 heterojunction for water splitting via interface engineering. J Mater Sci: Mater Electron 34, 1067 (2023). https://doi.org/10.1007/s10854-023-10460-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10460-4

Navigation