Skip to main content
Log in

Reactive magnetron sputtered AlN thin films: structural, linear and nonlinear optical characteristics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study investigates the structural and optical characteristics of aluminum nitride (AlN) thin films deposited using reactive magnetron sputtering (dcMS)in an Ar + N2 (80:20%) atmosphere. The AlN thin films were deposited on a substrate without any heat treatment process, and their structural properties were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The optical properties of the AlN thin films were studied by analyzing their transmittance and reflection using a double-beam UV–Vis–NIR spectrophotometer within the 300–1000 nm range. The results show that the AlN thin films have a wurtzite structure with a preferred orientation, and the average particle size is in the range of 80–83 nm. The AlN thin films have an average transmittance of approximately 70% and are transparent in the visible spectrum. The direct bandgap increases from 3.70 to 3.98 eV with increasing work pressure, and the refractive index increases to 2.17. Moreover, nonlinear optical parameters, including the nonlinear refractive index n2 and the nonlinear absorption coefficient βc, were calculated for the AlN thin films. The unique characteristics described above suggest potential applications that could make use of these properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

Relevant research data are included in the text of the work.

References

  1. R.K. Choudhary, P. Mishra, A. Biswas, A.C. Bidaye, Structural and optical properties of aluminum nitride thin films deposited by pulsed DC magnetron sputtering. ISRN Mater. Sci. 2013, 1–5 (2013)

    Article  Google Scholar 

  2. K.Y. Zang, S.J. Chua, L.S. Wang, C.V. Thompson, Evolution of AlN buffer layers on silicon and effects on the properties of epitaxial GaN films Phys. Status Solidi (c) 1(2067), 2071 (2003)

    Google Scholar 

  3. M. Mosca, J.-L. Reverchon, F. Omnès, J.-Y. Duboz, Effects of the buffer layers on the performance of (Al, Ga)N ultraviolet photodetectors. J. Appl. Phys. 95, 4367–4370 (2004)

    Article  CAS  Google Scholar 

  4. S. Arulkumaran, T. Egawa, S. Matsui, H. Ishikawa, Enhancement of breakdown voltage by AlN buffer layer thickness in AlGaN/GaN high-electron-mobility transistors on 4in. diameter silicon. Appl. Phys. Lett. 86, 123503 (2005)

    Article  Google Scholar 

  5. A. Stolz, A. Soltani, B. Abdallah, J. Charrier, D. Deresmes, P.Y. Jouan, M.A. Djouadi, E. Dogheche, J.C. De Jaeger, Optical properties of aluminum nitride thin films grown by direct-current magnetron sputtering close to epitaxy. Thin Solid Films 534, 442–445 (2013)

    Article  CAS  Google Scholar 

  6. P. Gräupner, J.C. Pommier, A. Cachard, J.L. Coutaz, Electro-optical effect in aluminum nitride waveguides. J. Appl. Phys. 71, 4136–4139 (1992)

    Article  Google Scholar 

  7. N. Sinha, G.E. Wabiszewski, R. Mahameed, V.V. Felmetsger, S.M. Tanner, R.W. Carpick, G. Piazza, Piezoelectric aluminum nitride nanoelectromechanical actuators. Appl. Phys. Lett. 95, 053106 (2009)

    Article  Google Scholar 

  8. C. Xiong, W.H.P. Pernice, X. Sun, C. Schuck, K.Y. Fong, H.X. Tang, Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics. New J. Phys. 14, 095014 (2012)

    Article  Google Scholar 

  9. C. Huang, J. Fan, R. Zhang, L. Zhu, Internal frequency mixing in a single optomechanical resonator. Appl. Phys. Lett. 101, 231112 (2012)

    Article  Google Scholar 

  10. M.H.S. Alrashdan, A.A. Hamzah, B.Y. Majlis, M.F. Aziz, Aluminum nitride thin film deposition using DC sputtering. in 2014 IEEE International Conference on Semiconductor Electronics (ICSE2014) (IEEE, 2014)

  11. A. Taurino, M.A. Signore, M. Catalano, M.J. Kim, (1 0 1) and (0 0 2) oriented AlN thin films deposited by sputtering. Mater. Lett. 200, 18–20 (2017)

    Article  CAS  Google Scholar 

  12. D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Höpler, R. Dimitrov, O. Ambacher, M. Stutzmann, Optical constants of epitaxial AlGaN films and their temperature dependence. J. Appl. Phys. 82, 5090–5096 (1997)

    Article  CAS  Google Scholar 

  13. G. Kipshidze, V. Kuryatkov, B. Borisov, M. Holtz, S. Nikishin, H. Temkin, AlGaInN-based ultraviolet light-emitting diodes grown on Si(111). Appl. Phys. Lett. 80, 3682–3684 (2002)

    Article  CAS  Google Scholar 

  14. C.Y. Yeh, Z.W. Lu, S. Froyen, A. Zunger, Zinc-blende-wurtzite polytypism in semiconductors. Phys. Rev. B Condens. Matter 46, 10086–10097 (1992)

    Article  CAS  Google Scholar 

  15. I. Vurgaftman, J.R. Meyer, Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 94, 3675–3696 (2003)

    Article  CAS  Google Scholar 

  16. M. Akiyama, T. Kamohara, K. Kano, A. Teshigahara, Y. Takeuchi, N. Kawahara, Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering. Adv. Mater. 21, 593–596 (2009)

    Article  CAS  Google Scholar 

  17. M.A. Caro, S. Zhang, T. Riekkinen, M. Ylilammi, M.A. Moram, O. Lopez-Acevedo, J. Molarius, T. Laurila, Piezoelectric coefficients and spontaneous polarization of ScAlN. J. Phys. Condens. Matter 27, 245901 (2015)

    Article  Google Scholar 

  18. F. Tasnadi, B. Alling, C. Hoglund, G. Wingqvist, J. Birch, L. Hultman, I.A. Abrikosov, Origin of the anomalous piezoelectric response in wurtzite Sc(x)Al(1–x)N alloys. Phys. Rev. Lett. 104, 137601 (2010)

    Article  Google Scholar 

  19. M. Moreira, J. Bjurström, I. Katardjev, V. Yantchev, Aluminum scandium nitride thin-film bulk acoustic resonators for wide band applications. Vacuum 86, 23–26 (2011)

    Article  Google Scholar 

  20. C. Fei, X. Liu, B. Zhu, D. Li, X. Yang, Y. Yang, Q. Zhou, AlN piezoelectric thin films for energy harvesting and acoustic devices. Nano Energy 51, 146–161 (2018)

    Article  CAS  Google Scholar 

  21. W.R.L. Lambrecht, Electronic structure of diamond, silicon carbide, and the group-III nitrides. MRS Proc. 339, 1 (2011)

    Google Scholar 

  22. E.J. Bienk, H. Jensen, G.N. Pedersen, G. Sørensen, Effect of reactive gas mass flow on the composition and structure of AIN films deposited by reactive sputtering. Thin Solid Films 230, 121–127 (1993)

    Article  CAS  Google Scholar 

  23. I. Ivanov, L. Hultman, K. Järrendahl, P. Mårtensson, J.-E. Sundgren, B. Hjörvarsson, J.E. Greene, Growth of epitaxial AlN(0001) on Si(111) by reactive magnetron sputter deposition. J. Appl. Phys. 78, 5721–5726 (1995)

    Article  CAS  Google Scholar 

  24. A. Madan, I.W. Kim, S.C. Cheng, P. Yashar, V.P. Dravid, S.A. Barnett, Stabilization of cubic AlN in epitaxial AlN/TiN superlattices. Phys. Rev. Lett. 78, 1743–1746 (1997)

    Article  CAS  Google Scholar 

  25. H.-C. Lee, J.-Y. Lee, H.-J. Ahn, Effect of the substrate bias voltage on the crystallographic orientation of reactively sputtered AlN thin films. Thin Solid Films 251, 136–140 (1994)

    Article  CAS  Google Scholar 

  26. A.K. Chu, C.H. Chao, F.Z. Lee, H.L. Huang, Influences of bias voltage on the crystallographic orientation of AlN thin films prepared by long-distance magnetron sputtering. Thin Solid Films 429, 1–4 (2003)

    Article  CAS  Google Scholar 

  27. Y.G. Roman, A.P.M. Adriaansen, Aluminium nitride films made by low pressure chemical vapour deposition: preparation and properties. Thin Solid Films 169, 241–248 (1989)

    Article  CAS  Google Scholar 

  28. K. Jagannadham, A.K. Sharma, Q. Wei, R. Kalyanraman, J. Narayan, Structural characteristics of AlN films deposited by pulsed laser deposition and reactive magnetron sputtering: a comparative study. J. Vac. Sci. Technol. A Vac. Surf. Films 16, 2804–2815 (1998)

    Article  CAS  Google Scholar 

  29. M. Ishihara, S.J. Li, H. Yumoto, K. Akashi, Y. Ide, Control of preferential orientation of AlN films prepared by the reactive sputtering method. Thin Solid Films 316, 152–157 (1998)

    Article  CAS  Google Scholar 

  30. X.-H. Xu, H.-S. Wu, C.-J. Zhang, Z.-H. Jin, Morphological properties of AlN piezoelectric thin films deposited by DC reactive magnetron sputtering. Thin Solid Films 388, 62–67 (2001)

    Article  CAS  Google Scholar 

  31. X.H. Ji, S.P. Lau, G.Q. Yu, W.H. Zhong, B.K. Tay, Structural properties and nanoindentation of AlN films by a filtered cathodic vacuum arc at low temperature. J. Phys. D Appl. Phys. 37, 1472–1477 (2004)

    Article  CAS  Google Scholar 

  32. S. Strite, GaN, AlN, and InN: a review. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 10, 1237–1266 (1992)

    Article  CAS  Google Scholar 

  33. J.R. Mileham, S.J. Pearton, C.R. Abernathy, J.D. MacKenzie, R.J. Shul, S.P. Kilcoyne, Wet chemical etching of AlN. Appl. Phys. Lett. 67, 1119–1121 (1995)

    Article  CAS  Google Scholar 

  34. H. Okano, T. Tanaka, K. Shibata, S. Nakano, Orientation control of AlN film by electron cyclotron resonance ion beam sputtering. Jpn. J. Appl. Phys. 31, 3017–3020 (1992)

    Article  CAS  Google Scholar 

  35. J.H. Edgar, Properties of Group III Nitrides (Institute of Engineering & Technology, London, 1994)

    Google Scholar 

  36. V. Dimitrova, D. Manova, T. Paskova, T. Uzunov, N. Ivanov, D. Dechev, Aluminium nitride thin films deposited by DC reactive magnetron sputtering. Vacuum 51, 161–164 (1998)

    Article  CAS  Google Scholar 

  37. H. Cheng, Y. Sun, J.X. Zhang, Y.B. Zhang, S. Yuan, P. Hing, AlN films deposited under various nitrogen concentrations by RF reactive sputtering. J. Cryst. Growth 254, 46–54 (2003)

    Article  CAS  Google Scholar 

  38. G. Carlotti, G. Gubbiotti, F.S. Hickernell, H.M. Liaw, G. Socino, Comparative study of the elastic properties of polycrystalline aluminum nitride films on silicon by Brillouin light scattering. Thin Solid Films 310, 34–38 (1997)

    Article  CAS  Google Scholar 

  39. A.V. Dobrynin, Thermoelastic strain and plastic yielding in aluminum nitride on sapphire. J. Appl. Phys. 85, 1876–1882 (1999)

    Article  CAS  Google Scholar 

  40. S. Venkataraj, D. Severin, R. Drese, F. Koerfer, M. Wuttig, Structural, optical and mechanical properties of aluminium nitride films prepared by reactive DC magnetron sputtering. Thin Solid Films 502, 235–239 (2006)

    Article  CAS  Google Scholar 

  41. M. Akiyama, Y. Morofuji, T. Kamohara, K. Nishikubo, M. Tsubai, O. Fukuda, N. Ueno, Flexible piezoelectric pressure sensors using oriented aluminum nitride thin films prepared on polyethylene terephthalate films. J. Appl. Phys. 100, 114318 (2006)

    Article  Google Scholar 

  42. T. Shiino, S. Shiba, N. Sakai, T. Yamakura, L. Jiang, Y. Uzawa, H. Maezawa, S. Yamamoto, Improvement of the critical temperature of superconducting NbTiN and NbN thin films using the AlN buffer layer. Supercond. Sci. Technol. 23, 045004 (2010)

    Article  Google Scholar 

  43. R. Matloub, A. Artieda, C. Sandu, E. Milyutin, P. Muralt, Electromechanical properties of Al0.9Sc0.1N thin films evaluated at 2.5 GHz film bulk acoustic resonators. Appl. Phys. Lett. 99, 092903 (2011)

    Article  Google Scholar 

  44. V. Mortet, M. Nesladek, K. Haenen, A. Morel, M. D’Olieslaeger, M. Vanecek, Physical properties of polycrystalline aluminium nitride films deposited by magnetron sputtering. Diam. Relat. Mater. 13, 1120–1124 (2004)

    Article  CAS  Google Scholar 

  45. C. Duquenne, M.P. Besland, P.Y. Tessier, E. Gautron, Y. Scudeller, D. Averty, Thermal conductivity of aluminium nitride thin films prepared by reactive magnetron sputtering. J. Phys. D Appl. Phys. 45, 015301 (2012)

    Article  Google Scholar 

  46. F. Martin, M.E. Jan, S. Rey-Mermet, B. Belgacem, D. Su, M. Cantoni, P. Muralt, Shear mode coupling and tilted grain growth of A1N thin films in BAW resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 1339–1343 (2006)

    Article  Google Scholar 

  47. M. Ishihara, K. Yamamoto, F. Kokai, Y. Koga, Effect of laser wavelength for surface morphology of aluminum nitride thin films by nitrogen radical-assisted pulsed laser deposition. Jpn. J. Appl. Phys. 40, 2413–2416 (2001)

    Article  CAS  Google Scholar 

  48. A. Vir Singh, S. Chandra, G. Bose, Deposition and characterization of c-axis oriented aluminum nitride films by radio frequency magnetron sputtering without external substrate heating. Thin Solid Films 519, 5846–5853 (2011)

    Article  Google Scholar 

  49. S. Shanmugan, D. Mutharasu, P. Anithambigai, N. Teeba, I.A. Razak, Synthesis and structural properties of DC sputtered AlN thin films on different substrates. J. Ceram. Proc. Res. 14, 385 (2013)

    Google Scholar 

  50. M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013)

    Article  CAS  Google Scholar 

  51. D. Xiao, Gas Discharge and Gas Insulation (Springer, New York, 2016)

    Book  Google Scholar 

  52. A. Bogaerts, R. Gijbels, V.V. Serikov, Calculation of gas heating in direct current argon glow discharges. J. Appl. Phys. 87, 8334–8344 (2000)

    Article  CAS  Google Scholar 

  53. S.A. Tepe, M. Danışman, N. Cansever, Crystallization of TiO2 on sputter deposited amorphous titanium thin films. Mater. Chem. Phys. 282, 125965 (2022)

    Article  CAS  Google Scholar 

  54. S. Muhl, J.M. Méndez, A review of the preparation of carbon nitride films. Diam. Relat. Mater. 8, 1809–1830 (1999)

    Article  CAS  Google Scholar 

  55. D. Gupta, V. Chauhan, S. Upadhyay, N. Koratkar, F. Singh, S. Kumar, A. Mahajan, R. Chandra, R. Kumar, Defects engineering and enhancement in optical and structural properties of 2D-MoS2 thin films by high energy ion beam irradiation. Mater. Chem. Phys. 276, 125422 (2022)

    Article  CAS  Google Scholar 

  56. F. Martin, P. Muralt, M.-A. Dubois, A. Pezous, Thickness dependence of the properties of highly c-axis textured AlN thin films. J. Vac. Sci. Technol. A Vac. Surf. Films 22, 361–365 (2004)

    Article  CAS  Google Scholar 

  57. H.L. Kao, P.J. Shih, C.-H. Lai, The study of preferred orientation growth of aluminum nitride thin films on ceramic and glass substrates. Jpn. J. Appl. Phys. 38, 1526 (1999)

    Article  CAS  Google Scholar 

  58. H. Cheng, Y. Sun, P. Hing, Microstructure evolution of AlN films deposited under various pressures by RF reactive sputtering. Surf. Coat. Technol. 166, 231–236 (2003)

    Article  CAS  Google Scholar 

  59. A. Hiranaka, X. Yi, G. Saito, J. Niu, T. Akiyama, Effects of Al particle size and nitrogen pressure on AlN combustion synthesis. Ceram. Int. 43, 9872–9876 (2017)

    Article  CAS  Google Scholar 

  60. H. Liu, H. Li, B. Jiang, Effects of target current density on the ionization rate of deposited particles and breakdown strength of AlN films. Mater. Res. Express 7, 026416 (2020)

    Article  CAS  Google Scholar 

  61. A.E. Giba, P. Pigeat, S. Bruyère, T. Easwarakhanthan, F. Mücklich, D. Horwat, Controlling refractive index in AlN films by texture and crystallinity manipulation. Thin Solid Films 636, 537–545 (2017)

    Article  CAS  Google Scholar 

  62. K. Chopra, Thin Film Device Applications (Springer, New York, 2012)

    Google Scholar 

  63. S. Faÿ, U. Kroll, C. Bucher, E. Vallat-Sauvain, A. Shah, Low pressure chemical vapour deposition of ZnO layers for thin-film solar cells: temperature-induced morphological changes. Sol. Energy Mater. Sol. Cells 86, 385–397 (2005)

    Article  Google Scholar 

  64. D. Dorranian, L. Dejam, A.H. Sari, A. Hojabri, Structural and optical properties of copper nitride thin films in a reactive Ar/N2magnetron sputtering system. Eur. Phys. J. Appl. Phys. 50, 20503 (2010)

    Article  Google Scholar 

  65. E.R. Shaaban, M. Abdel-Rahman, E.S. Yousef, M.T. Dessouky, Compositional dependence of the optical properties of amorphous antimony selenide thin films using transmission measurements. Thin Solid Films 515, 3810–3815 (2007)

    Article  CAS  Google Scholar 

  66. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Physica Status Solidi (b) 15, 627–637 (1966)

    Article  CAS  Google Scholar 

  67. J.I. Pankove, Optical Processes in Semiconductors (Courier Corporation, North Chelmsford, 1975)

    Google Scholar 

  68. P.R. Jubu, F.K. Yam, V.M. Igba, K.P. Beh, Tauc-plot scale and extrapolation effect on bandgap estimation from UV–Vis–NIR data—a case study of β-Ga2O3. J. Solid State Chem. 290, 121576 (2020)

    Article  CAS  Google Scholar 

  69. P. Motamedi, K. Cadien, Structural and optical characterization of low-temperature ALD crystalline AlN. J. Cryst. Growth 421, 45–52 (2015)

    Article  CAS  Google Scholar 

  70. Y. Arosa, C.D.R. Fernández, E.L. Lago, A. Amigo, L.M. Varela, O. Cabeza, R. de la Fuente, Refractive index measurement of imidazolium based ionic liquids in the Vis–NIR. Opt. Mater. 73, 647–657 (2017)

    Article  CAS  Google Scholar 

  71. A.S. Hassanien, I. Sharma, A.A. Akl, Physical and optical properties of a-Ge–Sb–Se–Te bulk and film samples: refractive index and its association with electronic polarizability of thermally evaporated a-Ge15–xSbxSe50Te35 thin-films. J. Non-Cryst. Solids 531, 119853 (2020)

    Article  CAS  Google Scholar 

  72. A.S. Hassanien, Studies on dielectric properties, opto-electrical parameters and electronic polarizability of thermally evaporated amorphous Cd50S50−xSex thin films. J. Alloys Compd. 671, 566–578 (2016)

    Article  CAS  Google Scholar 

  73. S.H. Wemple, M. DiDomenico, Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3, 1338 (1971)

    Article  Google Scholar 

  74. S. Das, P. Priyadarshini, D. Alagarasan, S. Vardhrajperumal, R. Ganesan, R. Naik, Role of tellurium addition on the linear and non-linear optical, structural, morphological properties of Ag60-xSe40Tex thin films for nonlinear applications. J. Am. Ceram. Soc. 105, 3469–3484 (2022)

    Article  CAS  Google Scholar 

  75. P. Yadav, A. Sharma, Investigation of optical nonlinearities in Bi-doped Se–Te chalcogenide thin films. J. Electron. Mater. 44, 916–921 (2015)

    Article  CAS  Google Scholar 

  76. J. Cimek, N. Liaros, S. Couris, R. Stępień, M. Klimczak, R. Buczyński, Experimental investigation of the nonlinear refractive index of various soft glasses dedicated for development of nonlinear photonic crystal fibers. Opt. Mater. Express 7, 3471–3483 (2017)

    Article  CAS  Google Scholar 

  77. L. Tichý, H. Tichá, P. Nagels, R. Callaerts, R. Mertens, M. Vlček, Optical properties of amorphous As–Se and Ge–As–Se thin films. Mater. Lett. 39, 122–128 (1999)

    Article  Google Scholar 

  78. A. Parida, D. Sahoo, D. Alagarasan, S. Vardhrajperumal, R. Ganesan, R. Naik, Increase in nonlinear susceptibility and refractive index in quaternary In15Sb10S15Se60 thin films upon annealing at different temperature for photonic applications. J. Alloys Compd. 905, 164143 (2022)

    Article  CAS  Google Scholar 

  79. M.A. Mahdy, E.A. Mahmoud, I.A. Mahdy, Linear and nonlinear optical response dependency on the crystallite size of CdTe and its structural properties. Surf. Interfaces 23, 100974 (2021)

    Article  CAS  Google Scholar 

  80. A.A. Abuelwafa, M.S. Abd El-sadek, S. Elnobi, T. Soga, Effect of transparent conducting substrates on the structure and optical properties of tin (II) oxide (SnO) thin films: comparative study. Ceram. Int. 47, 13510–13518 (2021)

    Article  CAS  Google Scholar 

  81. P. Priyadarshini, D. Alagarasan, R. Ganesan, S. Varadharajaperumal, R. Naik, Influence of proton ion irradiation on the linear–nonlinear optoelectronic properties of Sb40Se20S40 thin films at different fluences for photonic devices. ACS Appl. Opt. Mater. 1, 55–68 (2022)

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project (Grant No. PNURSP2023R17), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Funding

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project (Grant No. PNURSP2023R17), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

HAA, AMH, HMHZ: Conceptualization, Methodology, Software, Validation, Investigation, Data Curation, Writing-Review and Editing, Visualization, Supervision.

Corresponding author

Correspondence to Hesham M. H. Zakaly.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alyousef, H.A., Hassan, A.M. & Zakaly, H.M.H. Reactive magnetron sputtered AlN thin films: structural, linear and nonlinear optical characteristics. J Mater Sci: Mater Electron 34, 1088 (2023). https://doi.org/10.1007/s10854-023-10459-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10459-x

Navigation