Skip to main content
Log in

Investigation of hole-doping effect on structural, magnetic properties and magnetoresistance via Gd-site substitution by Pb in the layered manganite La0.1Gd0.2−xPbxCa1.2Sr0.6Mn2O7 (0 ≤ x ≤ 0.2)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the hole-doping double-layered manganites with formula \({\mathrm{La}}_{1.0}{\mathrm{Gd}}_{(0.2-x)}{\mathrm{Pb}}_{\mathrm{x}}{\mathrm{Ca}}_{1.2}{\mathrm{Sr}}_{0.6}{\mathrm{Mn}}_{2}{\mathrm{O}}_{7}\) (x = 0, 0.1, and 0.2) are prepared by the solid-state reaction route and experimentally characterized. The samples' crystallization into a tetragonal structure with an I4/mmm space group was confirmed by Rietveld refinement results of the XRD diffraction patterns using the FullProf software. The results were thoroughly studied after it was discovered that the cell parameters were decreasing. The structure was granular and porous, with grains that resembled spheres, according to micrographs obtained using a scanning electron microscope (SEM). Fourier-transform infrared (FTIR) analysis shows that our samples' characteristic vibrational bands are present. The entire temperature range of 0 to 300 K was used to evaluate electrical resistivity both in the absence and in the presence of an applied magnetic field. The increase in bandwidth, which is determined from the Rietveld refinement results, is found to explain why the \(\rho (T)\) lowers with increasing Pb concentrations for a given temperature. The calculated magnetoresistance (MR%) for sample with x = 0.1 fell to 24.62% at 8 K for x = 0.2 from a maximum value of 30.01% at 5 K under 1 T of applied magnetic field. These values give our samples the opportunity to be good candidates in temperature and magnetic sensors in the cryogenic domains at low magnetic field. Residual resistivity, weak localization, electron–electron, and/or electron–phonon combinations fit the resistivity curves well in the low temperature region. The resistivity curves' fitting revealed that the adiabatic tiny polaron hopping model and Mott’s 3D variable range hopping mechanism (3D-VRH) are both effective at controlling electrical conduction above \({\mathrm{T}}_{\mathrm{MI}}\) and below Debye temperature, respectively. Based on Mott’s 3D-VRH model, the density of states near the Fermi level \((\mathrm{DOS})\), mean hopping distance \({\mathrm{R}}_{\mathrm{h}}\), and mean hopping energy \({\mathrm{E}}_{\mathrm{h}}\) of the charge carriers have been carried out and discussed. On the basis of measurements of magnetization, inverse susceptibility, and loop hysteresis, the samples’ magnetic properties are thoroughly described and discussed. The samples show a magnetic phase change from the ferromagnetic to the paramagnetic phase at Curie temperature \({\mathrm{T}}_{\mathrm{C}}\). Griffith phase temperature was determined to be above \({\mathrm{T}}_{\mathrm{C}}\) based on the inverse of susceptibility’s temperature dependency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. V.P.S. Awana, R. Tripathi, N. Kumar, H. Kishan, G.L. Bhalla, R. Zeng, L.S.S. Chandra, V. Ganesan, H.U. Habermeier, Magnetotransport of La0.70Ca0.3-xSrxMnO3(Ag). A potential room temperature bolometer and magnetic sensor. J. Appl. Phys. 107, 09D723 (2010). https://doi.org/10.1063/1.3365412

    Article  Google Scholar 

  2. A. Rebello, V.B. Naik, R. Mahendiran, Large reversible magnetocaloric effect in La0.7-xPrxCa0.3MnO3. J. Appl Phys. 110, 013906 (2011). https://doi.org/10.1063/1.3603014

    Article  CAS  Google Scholar 

  3. Y. Xu, U. Memmert, U. Hartmann, Magnetic field sensors from polycrystalline manganites. J. Sens. Actuat. A. Phys. 91, 26–29 (2001). https://doi.org/10.1016/S0924-4247(01)00493-9

    Article  CAS  Google Scholar 

  4. Y.P. Yao, Y.K. Liu, S.N. Dong, Y.W. Yin, S.W. Yang, X.G. Li, Multi-state resistive switching memory with secure information storage in Au/BiFe0.95Mn0.05O3/La5/8Ca3/8MnO3 heterostructure. J. Appl. Phys. Lett. 100, 193504 (2012). https://doi.org/10.1063/1.4714514

    Article  CAS  Google Scholar 

  5. A.M. Oleś, L.F. Feiner, Consequences of orbital degeneracy in insulating and doped manganites. J. Supercond. 12, 299–302 (1999). https://doi.org/10.1023/A:1007732811609

    Article  Google Scholar 

  6. M.V. Lobanov, M. Greenblatt, N.C. Elad, J.D. Jorgensen, D.V. Sheptyakov, B.H. Toby, C.E. Botez, P.W. Stephens, Crystal and magnetic structure of the Ca3Mn2O7 Ruddlesden-Popper phase. Neutron and synchrotron x-ray diffraction study. J. Phys. Condens. Matter. (2004). https://doi.org/10.1088/0953-8984/16/29/023

    Article  Google Scholar 

  7. W. Zhu, L. Pi, Y. Huang, S. Tan, Y. Zhang, Electrically induced decrease of magnetization in Ca3Mn2O7. J. Appl. Phys. Lett. (2012). https://doi.org/10.1063/1.4767139

    Article  Google Scholar 

  8. P. Schiffer, A.P. Ramirez, W. Bao, S.W. Cheong, Low temperature magnetoresistance and the magnetic phase diagram of La1−xCaxMnO3. J. Phys. Rev. Lett. 75, 3336–3339 (1995). https://doi.org/10.1103/PhysRevLett.75.3336

    Article  CAS  Google Scholar 

  9. B. Raveau, A. Maignan, C. Martin, M. Hervieu, Colossal magnetoresistance manganite perovskites relations between crystal chemistry and properties. J. Chem. Mater. (1998). https://doi.org/10.1021/cm9801791

    Article  Google Scholar 

  10. H. Asano, J. Hayakawa, M. Matsui, Magnetotransport in perovskite series Lan-nxCa1+nxMnnO3n+1 ferromagnets. J. Phys. Rev. B. 57, 1052–1056 (1998). https://doi.org/10.1103/PhysRevB.57.1052

    Article  CAS  Google Scholar 

  11. A.K. Gupta, G.L. Bhalla, N. Khare, Magnetic phase diagram of double-layered La2-2xCa1+2xMn2O7 manganite. J. Phys. Chem. Solids. 67, 2358–2364 (2006). https://doi.org/10.1016/j.jpcs.2006.06.009

    Article  CAS  Google Scholar 

  12. J.C. Debnath, J. Wang, Magnetic and electrical response of Co- doped La0.7Ca0.3MnO3. J. Phys. B. 504, 58–62 (2017). https://doi.org/10.1016/j.physb.2016.10.017

    Article  CAS  Google Scholar 

  13. N. Mahamdioua, A. Amira, S.P. Altintas, A. Varilci, C. Terzioglu, Effect of Re doping on structure and magneto-electrical properties of La1.2Re0.2Ca1.6Mn2O7 manganites. J. Phys. B. Condens Matter. 429, 12–17 (2013). https://doi.org/10.1016/j.physb.2013.07.027

    Article  CAS  Google Scholar 

  14. N. Mahamdioua, A. Amira, S.P. Altintas, A. Varilci, C. Terzioglu, Structural and magnetotransport properties of the Y doped A- site deficient double layered manganites La1.2_x0.2YxCa1.6Mn2O7. J. Solid State Chem 240, 1–8 (2016). https://doi.org/10.1016/j.jssc.2016.05.011

    Article  CAS  Google Scholar 

  15. C. Zener, Interaction between the d shells in the transition metals. Phys. Rev. 81, 440 (1951)

    Article  CAS  Google Scholar 

  16. N. Mahamdioua, A. Amira, Y. Boudjadja, A. Saoudel, S.P. Altintas, A. Varilci, C. Terzioglu, Magneto conductive mechanisms in the La-site doped double-layered La1.4Ca1.6Mn2O7 manganites. J. Phys. B. 500, 77–84 (2016). https://doi.org/10.1016/j.physb.2016.07.011

    Article  CAS  Google Scholar 

  17. Y.S. Reddy, P. Kistaiah, C. Vishnuvardhan Reddy, Low temperature electrical transport in double layered CMR manganite La1.2Sr1.4Ba0.4Mn2O7. J. Adv. Mater Phys. Chem. 2, 49–52 (2012)

    Article  Google Scholar 

  18. Y.S. Reddy, V. Prashanth Kumar, R. Rawat, A. Banerjee, P. Kistaiah, C. Vishnuvardhan Reddy, Effect of Ca substitution on transport and magnetic properties of double-layered manganite La1.2Sr1.8Mn2O7. J. Phys. Stat. sol. 244, 3719–3729 (2007). https://doi.org/10.1002/pssb.200743099

    Article  CAS  Google Scholar 

  19. L.M. Rodriguez-Martinez, J.P. Attfield, Cation disorder and size effects in magnetoresistive manganese oxide perovskites. Phys. Rev. B 54, 5622–5625 (1996). https://doi.org/10.1103/PhysRevB.54.R15622

    Article  Google Scholar 

  20. L.M. Rodriguez-Martinez, J.P. Attfield, Cation disorder and the metal–insulator transition temperature in manganese oxide perovskites. Phys. Rev. B. 58, 2426–2429 (1998). https://doi.org/10.1103/PhysRevB.58.2426

    Article  CAS  Google Scholar 

  21. N. Soylu Koc, S.P. Altintas, N. Mahamdioua, C. Terzioglu, Cation size mismatch effect in (La1-yREy)1.4Ca1.6Mn2O7 perovskite manganites. J. All Comp. 797, 471–476 (2019). https://doi.org/10.1016/j.jallcom.2019.05.079

    Article  CAS  Google Scholar 

  22. A. Yadav, J. Shah, R. Tripathi, R.K. Kotnala, Room temperature metal-insulator transition observed in Pb substituted lanthanum manganite. J. Ceram. Int (2017). https://doi.org/10.1016/j.ceramint.2017.05.099

    Article  Google Scholar 

  23. S. Ghorai, S.A. Ivanov, R. Skiniand, P. Svedlindh, Evolution of Griffiths phase and critical behavior of La1-xPbxMnO3±y solid solutions. J. Phys. Condens. Matter. 33, 145801 (2021). https://doi.org/10.1088/1361-648X/abdd64

    Article  CAS  Google Scholar 

  24. D.C. Krishna, P. Venugopal Reddy, Magnetic transport behavior of nano-crystalline Pr0.67A0.33MnO3 (A = Ca, Sr, Pb and Ba) manganites. J. Alloys Compd. 479, 661–669 (2009). https://doi.org/10.1016/j.jallcom.2009.01.029

    Article  CAS  Google Scholar 

  25. J. Silva, A. Reyes, H. Esparza, H. Camacho, L. Fuentes, BiFeO3. A review on synthesis, doping and crystal structure. Integr. Ferroelectr. An Int. J. 126, 47–59 (2011). https://doi.org/10.1080/10584587.2011.574986

    Article  CAS  Google Scholar 

  26. A. Boultif, D. Louer, Powder pattern indexing with the dichotomy method. J. Appl. Cryst. 37, 724–731 (2004)

    Article  CAS  Google Scholar 

  27. J.R. Carvajal, FULLPROF version 3.0.0.Laboratorie Leon Brillioun, CEA CNRS, (1995). https://scholar.google.com/citations?user=mJgatLIAAAAJ&hl=fr&oi=sra

  28. S. Das, I. Sultana, M.D.I. Bhuyan, M.A. Basith, Enhanced magnetic softness of double-layered perovskite manganite La1.7Gd0.3SrMn2O7. J. IEEE. Magn. Lett. 10, 1–4 (2019). https://doi.org/10.1109/LMAG.2019.2915620

    Article  Google Scholar 

  29. M.A. Green, D.A. Neumann, Synthesis, structure, and electronic properties of LaCa2Mn2O7. J. Chem. Mater. 12, 90–97 (2000). https://doi.org/10.1021/cm991094i

    Article  CAS  Google Scholar 

  30. K. Raju, M.S. Song, J.Y. Lee, Crystal structure and magnetic properties of La2-x(Sr0.5Ca0.5)1+xMn2O7 (x=0.6, 0.8 and1.0) Ruddlesden-Popper manganites. J. Magn. Magn. Mater. 358, 119–122 (2014). https://doi.org/10.1016/j.jmmm.2014.01.040

    Article  CAS  Google Scholar 

  31. M. Ghaffari, M. Shannon, H. Hui, O.K. Tan, A. Irannejad, Preparation, surface state and band structure studies of SrTi(1–x)Fe(x)O(3−δ) (x = 0–1) perovskite-type nano structure by X-ray and ultraviolet photoelectron spectroscopy. J. Surf. Sci. 606, 670–677 (2012). https://doi.org/10.1016/j.susc.2011.12.013

    Article  CAS  Google Scholar 

  32. Y. Pham, Y.K. Yub, T.V. Manh, A. Gamzatov, D.M. Tartakovsky, S.C. Yu, D.S. Yang, D.H. Kim, Structural and magnetic properties control of Pr0.7Ba0.3MnO3 with Sr-doping. J. Phys. Solid. State. 62, 845–850 (2020). https://doi.org/10.1134/S1063783420050236

    Article  CAS  Google Scholar 

  33. S. Bouzidi, M.A. Gdaiem, A. Dhahri, J. Dhahri, E.K. Hlil, Large magnetocaloric effect in La0.75Ca0.25−xNaxMnO3 (0 ≤ x ≤ 0.10) manganites. J. Appl. Phys. A. 126, 1–16 (2020). https://doi.org/10.1007/s00339-019-3219-z

    Article  CAS  Google Scholar 

  34. A. Modi, M.A. Bhat, D.K. Pandey, S. Tarachand, N.K. Bhattacharya, G.S.O. Gau, Structural, magnetotransport and thermal properties of Sm substituted La0.7−xSmxBa0.3MnO3 (0≤x≤0.2) manganites. J. Magn. Magn Mater. 424, 459–466 (2017). https://doi.org/10.1016/j.jmmm.2016.10.048

    Article  CAS  Google Scholar 

  35. A. Belkahla, K. Cherif, J. Dhahri, E.K. Hlil, Structural and optical properties of the Ruddlesden-Popper La1.4(Sr0.95Ca0.05)1.6Mn2O7 sample prepared by a sol-gel method. J. Supercond. Nov. Magn. 29, 19–27 (2015). https://doi.org/10.1007/s10853-016-0046-x

    Article  CAS  Google Scholar 

  36. A.P. Ramirez, Colossal magnetoresistance. J. Phys. Condens. Matter. 9, 8171–8199 (1997). https://doi.org/10.1088/0953-8984/9/39/005

    Article  CAS  Google Scholar 

  37. J.B. Goodenougho, Theory of the role of covalence in the Perovskite-Type Manganites (La, M(II) MnO3). J. Phys. Rev. 100, 564–573 (1955). https://doi.org/10.1103/PhysRev.100.564

    Article  Google Scholar 

  38. P.D. Battle, M.A. Green, N.S. Laskey, J.E. Millburn, L. Murphy, M.J. Rosseinsky, S.P. Sullivan, J.F. Vente, Layered ruddlesden−popper manganese oxides. synthesis and cation ordering. J. Chem. Mater. 9, 552–559 (1997). https://doi.org/10.1021/cm960398r

    Article  CAS  Google Scholar 

  39. J.F. Mitchell, J.E. Millburn, M. Medarde, S. Short, J.D. Jorgensen, M.T. Fernadez-Diaz, Sr3Mn2O7. Mn4+ parent compound of the n=2 layered CMR manganites. J. Sol. Stat. Chem. 141, 599–603 (1998). https://doi.org/10.1006/jssc.1998.8026

    Article  CAS  Google Scholar 

  40. J.F. Mitchell, D.N. Argyriou, J.D. Jorgensen, D.G. Hinks, C.D. Potter, S.D. Bader, Charge delocalization and structural response in layered La1.2Sr1.8Mn2O7. Enhanced distortion in the metallic regime. J. Phys. Rev. B. 55, 63–66 (1997). https://doi.org/10.1103/PhysRevB.55.63

    Article  CAS  Google Scholar 

  41. G. Venkataiah, V. Prasad, P.V. Reddy, Influence of A-site cation mismatch on structural, magnetic and electrical properties of lanthanum manganites. J. Alloys. Compd. 429, 1–9 (2007). https://doi.org/10.1016/j.jallcom.2006.03.081

    Article  CAS  Google Scholar 

  42. K.F. Wang, Y. Wang, L.F. Wang, S. Dong, D. Li, Z.D. Zhang, H. Yu, Q.C. Li, J.-M. Liu, Cluster-glass state in manganites induced by A-site cation-size disorder. J. Phys. Rev. B. 73, 1–10 (2006). https://doi.org/10.1103/PhysRevB.73.134411

    Article  CAS  Google Scholar 

  43. G. Popov, M. Greenblatt, Large effects of A-site average cation size on the properties of the double perovskites Ba2-xSrxMnReO6. Ad5-d1 system. J. Phys. Rev. B. 67, 1–9 (2003). https://doi.org/10.1103/PhysRevB.67.024406

    Article  CAS  Google Scholar 

  44. I. Messaoui, M. Kumaresavanji, K. Riahi, W. Cheikhrouhou Koubaa, M. Koubaa, A. Cheikhrouhou, Investigation on magnetic and magnetocaloric properties in the Pb-doped manganites La0.78Ca0.22-xPbxMnO3(x=0, 0.05 and 0.1). J. Alloys Compd. 693, 705–718 (2017). https://doi.org/10.1016/j.jallcom.2016.09.222

    Article  CAS  Google Scholar 

  45. P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttingen 26, 98–100 (1918)

    Google Scholar 

  46. F.Denbri, N. Mahamdioua, F. Meriche, S. P. Altintas, and C. Terzioglu. Non-adiabatic small-polaron and 3D-Mott’s variable range conductions above 100 K in Pb-substituted double-layered manganites LaSm0.4Ca1.6-xPbxMn2O7. J. Solid State Comm. 342, 114614 (2022). https://doi.org/10.1016/j.ssc.2021.114614

  47. G.K. Williamson, W.H. Hall, X-ray line broadening from fled aluminium and wolfram. Acta Metall. 1(1), 22–31 (1953). https://doi.org/10.1016/0001-6160(53)90006-6

    Article  CAS  Google Scholar 

  48. S. AarifUlIslam, M. Ikram, Structural STABILITY IMPROVEMENT, Williamson hall analysis and band-gap tailoring through A-site Sr doping in rare earth based double perovskite La2NiMnO6. J. Rare Met. 38, 805–813 (2019). https://doi.org/10.1007/s12598-019-01207-4

    Article  CAS  Google Scholar 

  49. Rasband, W.S, ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/, 1997–2018.

  50. Y. Xin, L. Shi, J. Zhao, X. Yuan, L. Hou, R. Tong, Electrical transport properties driven by magnetic competition in hole-doped perovskite Pr1-xBaxMnO3 (0.25 ≤ x ≤0.36). J. Ceram. Int. 47, 19464–19470 (2021). https://doi.org/10.1016/j.ceramint.2021.03.283

    Article  CAS  Google Scholar 

  51. A. Telegin, Y. Sukhorukov, Magnetic semiconductors as materials for spintronics. J. Magnetochem. 12, 173 (2022). https://doi.org/10.1007/s12598-019-01207-4

    Article  CAS  Google Scholar 

  52. M. Ziese, “Extrinsic magnetotransport phenomena in ferromagnetic oxides. Rep. Prog. Phys. 65, 143 (2002). https://doi.org/10.1088/0034-4885/65/2/202

    Article  CAS  Google Scholar 

  53. M.H. Ehsani, P. Kameli, M.E. Ghazi, Influence of grain size on the electrical properties of the double-layered LaSr2Mn2O7 manganite. J. Phys. Chem. Solid. 73, 744–750 (2012). https://doi.org/10.1016/j.jpcs.2012.01.020

    Article  CAS  Google Scholar 

  54. M.H. Ehsani, M.E. Ghazi, P. Kameli, Effects of pH and sintering temperature on the synthesis and electrical properties of the bilayered LaSr2Mn2O7 manganite prepared by the sol–gel process. J. Mater. sci. 47, 5815–5822 (2012). https://doi.org/10.1007/s10853-012-6481-4

    Article  CAS  Google Scholar 

  55. A. Arrar, M. Benhaliliba, A. Boukhachem, A. Ayeshamariam, The green emission from nanospheres based on La1-xSrxMnO2.75 Perovskites. J. Nanoelec. Optoelect. 13, 1–8 (2018). https://doi.org/10.1166/jno.2019.2465

    Article  CAS  Google Scholar 

  56. S. Ravia, A. Karthikeyana, Effect of calcination temperature on La0.7Sr0.3MnO3 nanoparticles synthesized with modified sol-gel route. J. Phys. Procedia. 54, 45–54 (2014). https://doi.org/10.1016/j.phpro.2014.10.035

    Article  CAS  Google Scholar 

  57. P.T. Phong, N.V. Khien, N.V. Dang, D.H. Manh, L.V. Hong, I.-J. Lee, Effect of pb substitution on structural and electrical transport of La0.7Ca0.3-xPbxMnO3 (0≤x≤0.3) manganites. J. Phys. B. 466, 44–49 (2015). https://doi.org/10.1016/j.physb.2015.03.022

    Article  CAS  Google Scholar 

  58. A. Pal, A. Rao, D. Kekuda, B.S. Nagaraja, R. Mondal, D. Biswas, Investigation of cationic disorder effects on the transport and magnetic properties of perovskite Pr0.7-xRExSr0.3MnO3 (x= 0.0, 0.2; RE= Nd, Sm, & Gd). J. Magn. Magn. Mater. 512, 167011 (2020). https://doi.org/10.1016/j.jmmm.2020.167011

    Article  CAS  Google Scholar 

  59. P.G. Radaelli, G. Iannone, Structural effects on the magnetic and transport properties of perovskite A1-xA’xMnO3 (x=0.25, 0.30).J. Phys Rev. B. 56, 8265–8276 (1997). https://doi.org/10.1103/PhysRevB.56.8265

    Article  CAS  Google Scholar 

  60. Yu.A. Izyumov, Yu.N. Skryabin, Double exchange model and the unique properties of the manganites. J. Rev. IOP. Sci. 44, 109–134 (2001)

    CAS  Google Scholar 

  61. J.M.D. Coey, M. Viret, S. von Molnar, Mixed-valence manganites. J. Adv. Phys. 48, 167–293 (1999). https://doi.org/10.1080/000187399243455

    Article  CAS  Google Scholar 

  62. S. Bouzidi, M.A. Gdaiem, Ah. Dhahri, J. Dhahri, E.K. Hlil, Charge transport mechanism and percolation model in La0.75Ca0.25−xNaxMnO3 (0 ≤ x ≤ 0.10) manganites. J. Mater. Sci. Mater. Electr. 31, 11548–11559 (2020). https://doi.org/10.1007/s10854-020-03703-1

    Article  CAS  Google Scholar 

  63. C. Xiong, H. Hu, Y. Xiong, Z. Zhang, H. Pi, X. Wu, L. Li, F. Wei, C. Zheng, Electrical properties and enhanced room temperature magnetoresistance in (La0.7Ca0.2Sr0.1MnO3)1–x/Pdx composites. J. Alloys Compd. 479, 357–362 (2009). https://doi.org/10.1016/j.jallcom.2008.12.087

    Article  CAS  Google Scholar 

  64. F. Denbri, N. Mahamdioua, F. Meriche, N.S. Koc, C. Terzioglu, A. Varilci, S.P. Altintas, A-site Pb doping effect on structural, microstructural and magnetotransport properties of La0. 5Sm0. 2Ca0. 3-xPbxMnO3 (x= 0, 0.05, 0.10) manganite. Mater. Chem. Phys. 267, 124550 (2021). https://doi.org/10.1016/j.matchemphys.2021.124550

    Article  CAS  Google Scholar 

  65. P. Kameli, H. Salamati, A. Aezami, Influence of grain size on magnetic and transport properties of polycrystalline La0.8Sr0.2MnO3 manganites. J. Alloys compd 450, 7–11 (2008). https://doi.org/10.1016/j.jallcom.2006.10.078

    Article  CAS  Google Scholar 

  66. M.H. Ehsani, M.J. Mehrabad, P. Kameli, M.E. Ghazi, F.S. Razavi, Low-temperature electrical resistivity of bilayered LaSr2Mn2O7 manganite. J. Low. Temp. Phys. 183, 359–370 (2016). https://doi.org/10.1007/s10909-016-1520-1

    Article  CAS  Google Scholar 

  67. Z.Chen, Y. Su, Y.Li, D. Liu, C.Wang, J. Zhang, Electronic Transport and Magnetic Properties in Y0.125Ca0.875MnO3 Manganite. J. IEEE. Trans on Magn. 45, 2616–2619 (2009). https://doi.org/10.1109/TMAG.2009.2018917

  68. F. Denbri, N. Mahamdioua, F. Meriche, S.P. Altintas, C. Terzioglu, Investigation of magneto-transport properties of the codoped La1.6-xPrxCa1.4-xBaxMn2O7 (x = 0.2 and 0.4) double-layered manganite. J. Mater. Sci. Mater Electron. 32, 18808–18824 (2021). https://doi.org/10.1007/s10854-021-06398-0

    Article  CAS  Google Scholar 

  69. C.B. Wang, Y.J. Shen, Y.X. Zhu, L.M. Zhang, Transport properties of La1-xSrxMnO3 ceramics above metal–insulator transition temperature. J. Phys. B Condens Matter. 461, 57–60 (2015). https://doi.org/10.1016/j.physb.2014.12.015

    Article  CAS  Google Scholar 

  70. A.K. Gupta, V. Kumar, G.L. Bhalla, N. Khare, Low temperature electrical transport in La2−2xCa1+2xMn2O7 double layered manganite. J. Alloys Compd. 438, 56–61 (2007). https://doi.org/10.1016/j.jallcom.2006.08.034

    Article  CAS  Google Scholar 

  71. A.K. Gupta, V. Kumar, N. Khare, Hopping conduction in double layered La2-2xCa1+2xMn2O7 manganite. J. Solid. State Scien. 9, 817–823 (2007). https://doi.org/10.1016/j.solidstatesciences.2007.06.009

    Article  CAS  Google Scholar 

  72. N.F. Mott, E.A. Davis, Electronic Process in Nanocrystalline Materials (Clarendon, Oxford, 1971)

    Google Scholar 

  73. P.S. Prabhu, U.V. Varadaraju, Effect of 3d ion substitution in the RBa2Cu3-xMxO7 (R=Sm, Dy; M=Fe, Ni and Zn) system. Implications of R ion dependence and disorder. J. Phys. Rev. B. 53, 14637–14646 (1996). https://doi.org/10.1103/PhysRevB.53.14637

    Article  CAS  Google Scholar 

  74. W.H. Jung, Evaluation of Mott’s parameters for hopping conduction in La0.67Ca0.33MnO3 above Tc. J. Mater. Sci. Lett. 17, 1317–1319 (1998). https://doi.org/10.1023/A.10066652004815

    Article  CAS  Google Scholar 

  75. M. Abassi, Za. Mohamed, J. Dhahri, E.K. Hlil, Electrical transport and giant magnetoresistance in La0.62Er0.05Ba0.33FexMn1-xO3 (x = 0 and 0.15) manganites. J. Alloys. Compd. 936, 197–202 (2015). https://doi.org/10.1016/j.jallcom.2015.03.132

    Article  CAS  Google Scholar 

  76. B. Kumar, J.K. Tiwari, H. Ch Chauhan, S. Ghosh, Multiple magnetic phase transitions with diferent universality classes in bilayer La1.4 Sr1.6Mn2O7 manganite. J. Nature. 11, 1–17 (2021). https://doi.org/10.1038/s41598-021-00544-8

    Article  CAS  Google Scholar 

  77. Y. Ounza, M. Bouhbou, M. Oubla, M. Moutataouia, M. Lamire, E.K. Hlil, H. Lassri, Magnetic, magnetocaloric, and critical exponent properties of layered perovskite La1.1Bi0.3Sr1.6Mn2O7 prepared by coprecipitation method. J. Supercond. Nov. Magn. 33, 3791–3798 (2020). https://doi.org/10.1007/s10948-020-05637-5

    Article  CAS  Google Scholar 

  78. L. Han, P. Zhang, Y. Zhang, H. Zhu, W. Liu, J. Yang, Structure, magnetocaloric and critical properties of layered La2Sm0.4Sr0.6Mn2O7 perovskite. J. Ceram. Int. 43, 8709–8714 (2017). https://doi.org/10.1016/j.ceramint.2017.03.206

    Article  CAS  Google Scholar 

  79. S.O. Manjunatha, R. Ashok, V.P.S. Awana, G.S. Okram, Investigation on magnetic, electrical and thermoelectric power of Bi- substituted La0.8Ca0.2MnO3 manganites. J. Magn. Magn. Mater. 394, 130–137 (2015). https://doi.org/10.1016/j.jmmm.2015.06.053

    Article  CAS  Google Scholar 

  80. B.D. Cullity, Introduction to Magnetic Material (Addison-Wesley, New York, 1972)

    Google Scholar 

  81. Ah. Dhahri, M. Jemmali, K. Taibi, E. Dhahri, Structural, magnetic and magnetocaloric properties of La0.7Ca0.2Sr0.1Mn1-xCrxO3 compounds with x = 0,0.05 and 0.1. J. Alloys. Compd. 618, 488–496 (2014). https://doi.org/10.1016/j.jallcom.2014.08.117

    Article  CAS  Google Scholar 

  82. S.L. Ye, W.H. Song, J.M. Dai, K.Y. Wang, S.G. Wang, J.J. Dua, Large room-temperature magnetoresistance and phase separation in La1-xNaxMnO3 with 0.1≤x≤0.3. J. Appl. Phys. 90, 2943–2948 (2001). https://doi.org/10.1063/1.1396823

    Article  CAS  Google Scholar 

  83. A.K. Pramanik, A. Banerjee, Griffiths phase and its evolution with Mn-site disorder in the half-doped manganite Pr0.5Sr0.5Mn1−yGayO3 (y = 0.0, 0.025, and 0.05). J. Phys. Rev. B. 81, 1–5 (2010). https://doi.org/10.1103/PhysRevB.81.024431

    Article  CAS  Google Scholar 

  84. V.N. Krivoruchko, M.A. Marchenko, Y. Melikhov, Griffiths phase, metal-insulator transition, and magnetoresistance of doped manganites. J. Phy. Rev. 82, 1–11 (2010). https://doi.org/10.1103/PhysRevB.82.064419

    Article  CAS  Google Scholar 

  85. C. Magen, P.A. Algarabe, L. Morellon, J.P. Arau’jo, C. Ritter, M.R. Ibarra, A.M. Pereira, J.B. Sousa, Observation of a Griffiths- like phase in the magnetocaloric compound Tb5Si2Ge2. J. Phys. Rev. Lett. 96, 1–4 (2006). https://doi.org/10.1103/PhysRevLett.96.167201

    Article  CAS  Google Scholar 

  86. W. Jiang, X.Z. Zhou, G. Williams, Is a Griffiths phase a prerequisite for colossal magnetoresistance? J. Phys. Rev. Lett. 99, 1–4 (2007). https://doi.org/10.1103/PhysRevLett.99.177203

    Article  CAS  Google Scholar 

  87. R. Hamdi, M. Smari, A. Bajorek, L. Bessais, E. Dhahri, A. Samara, S.A. Mansour, Y. Haik, Griffiths phase, magnetic memory and ac susceptibility of an antiferromagnetic titanate-based perovskite Er0.9Sr0.1Ti 0.975 Cr0.025O3 system. J. Phys. Scripta. 95, 1–11 (2020). https://doi.org/10.1088/1402-4896/ab79af

    Article  CAS  Google Scholar 

  88. J. Khelifi, A. Tozri, F. Issaoui, E. Dhahri, E.K. Hlil, The influence of disorder on the appearance of Griffiths phase and magnetoresistive properties in (La1-xNdx)2/3(Ca1-ySry)1/3MnO3 oxides. J. Ceram Int. 40, 1641–1649 (2014). https://doi.org/10.1016/j.ceramint.2013.07.055

    Article  CAS  Google Scholar 

  89. H. Zhang, Q. Li, H. Liu, L. Chen, Y. Chen, Y. Li, Observation of Griffiths phase in polycrystalline La1-xCaxMnO3 for x-0.20. J. IEEE. Transaction. Magn. 46, 1483–1486 (2010). https://doi.org/10.1109/TMAG.2010.2044750

    Article  CAS  Google Scholar 

  90. Y. Guo, L. Shi, Sh. Zhou, J. Zhao, C. Wang, W. Liu, Sh. Wei, Tunable exchange bias effect in Sr-doped double perovskite La2NiMnO6. J. Phys. D. Appl. Phys. 46, 1–6 (2013). https://doi.org/10.1088/0022-3727/46/17/175302

    Article  CAS  Google Scholar 

  91. M.A. Basith, O. Kurni, M.S. Alam, B.L. Sinha, B. Ahmmad, Room temperature dielectric and magnetic properties of Gd and Ti co-doped BiFeO3 ceramics. J. Appl. Phys. 115, 1–7 (2014). https://doi.org/10.1063/1.4861151

    Article  CAS  Google Scholar 

  92. M.A. Basith, F.A. Khan, B. Ahmmad, S. Kubota, D.-T. Fumihiko Hirose, Q.-H. Ngo, K.M. Tran, Tunable exchange bias effect in magnetic Bi0.9Gd0.1Fe0.9Ti0.1O3 nanoparticles at temperatures up to 250 K. J. Appl. Phys. 118, 1–5 (2015). https://doi.org/10.1063/1.4926424

    Article  CAS  Google Scholar 

  93. B. Ahmmad, K. Kanomata, K. Koike, Sh. Kubota, H. Kato, F. Hirose, A. Billah, M.A. Jalil, M.A. Basith, Large difference between the magnetic properties of Ba and Ti co-doped BiFeO3 bulk materials and their corresponding nanoparticles prepared by ultrasonication. J. Phys. D. Appl. Phys. 49, 1–8 (2016). https://doi.org/10.1088/0022-3727/49/26/265003h

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by “Directorate General for Scientific Research and Technological Development – Algeria,” and JAA and JLM thank the Spanish Ministry of Science and Innovation for granting the project numbers: PID2021-122477OB-I00, funded by MCIN/AEI/10.**13039/501100011033 and by “ERDF A way of making Europe,” by the “European Union.”

Funding

This work was supported by “Directorate General for Scientific Research and Technological Development – Algeria,” and JAA and JLM thank the Spanish Ministry of Science and Innovation for granting the project numbers: PID2021-122477OB-I00, funded by MCIN/AEI/10.**13039/501100011033 and by “ERDF A way of making Europe,” by the “European Union.”

Author information

Authors and Affiliations

Authors

Contributions

NM conceived of the presented idea. NM and RB prepared the samples; SPA, CT and NM conceived and planned the experiments; FD and SPA carried out XRD, SEM, and resistivity measurement; NM and RB simulated and discussed the refinement of XRD patterns and discussed the simulation results of the magneto-electrical experimental data. RB, FM, and NM wrote the manuscript; FM, JAA, and JLM carried out the magnetic measurements, and all authors discussed the results and contributed and commented on the final manuscript. NM and CT supervised the project.

Corresponding author

Correspondence to Nabil Mahamdioua.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The authors declare that:

  • The presented article is original.

  • It has been written by the stated authors who are all aware of its content and approve its submission.

  • It has not been published previously and is not under consideration for publication elsewhere.

  • We also state that no conflict of interest exists about this work,

  • If accepted, this article will not be published elsewhere in the same form in any language without the consent of the publisher.

Consent to participate

Not applicable

Consent for publication

December, 12th., 2022

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belguet, R., Mahamdioua, N., Meriche, F. et al. Investigation of hole-doping effect on structural, magnetic properties and magnetoresistance via Gd-site substitution by Pb in the layered manganite La0.1Gd0.2−xPbxCa1.2Sr0.6Mn2O7 (0 ≤ x ≤ 0.2). J Mater Sci: Mater Electron 34, 1054 (2023). https://doi.org/10.1007/s10854-023-10452-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10452-4

Navigation