Skip to main content

Advertisement

Log in

A high-contrast electrochromic film with fast switching speed based on large-scale grown nanorod array

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electrochromic films are intelligent material that allows for adjustable transparency and light reflection and possesses broad application prospects. Therefore, it holds significant research significance and application value in the development of science and technology. In this work, we make polyaniline/nickel oxide (PANI/NiO) composite films by growing a nanorod (NR) array on the surface of aniline monomer electropolymerized films. The synthesized pore architecture provides an increased density of ion-conducting pathways, leading to reduced response times. The electrochromic film exhibits remarkable reversible color-switching characteristics, transitioning from a transparent light yellow state to an opaque black–purple state, with a high optical modulation range of approximately 72% and an impressively rapid coloring/bleaching time of 0.61 s/0.73 s. These results may be used in fields such as architecture, automobiles, aerospace, and others that have received extensive research and practical application and can bring about better energy conservation and environmental adaptability in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Z. Wang, X. Wang, S. Cong, F. Geng, Z. Zhao, Mater. Sci. Eng. R Rep. 140, 100524 (2020)

    Article  Google Scholar 

  2. W. Zhang, H. Li, E. Hopmann, A.Y. Elezzabi, Nanophotonics 10, 825 (2020)

    Article  Google Scholar 

  3. J. Zhang, J.-P. Tu, D. Zhang, Y.-Q. Qiao, X.-H. Xia, X.-L. Wang, C.-D. Gu, J. Mater. Chem. 21(43), 17316–17324 (2011)

    Article  CAS  Google Scholar 

  4. S. Bhadra, D. Khastgir, N.K. Singha, J.H. Lee, Prog. Polym. Sci. 34, 783 (2009)

    Article  CAS  Google Scholar 

  5. R. Berridge, S.P. Wright, P.J. Skabara, A. Dyer, T. Steckler, A.A. Argun, J.R. Reynolds, R.W. Harrington, W. Clegg, J. Mater. Chem. 17, 225 (2007)

    Article  CAS  Google Scholar 

  6. S.H. Lee, R. Deshpande, P.A. Parilla, K.M. Jones, B. To, A.H. Mahan, A.C. Dillon, Adv. Mater. 18, 763 (2006)

    Article  CAS  Google Scholar 

  7. S.R. Yousefi, M. Masjedi-Arani, M.S. Morassaei, M. Salavati-Niasari, H. Moayedi, Int. J. Hydrog. Energy 44, 24005–24016 (2019)

    Article  CAS  Google Scholar 

  8. M.A. Mahdi, S.R. Yousefi, L.S. Jasim, M. Salavati-Niasari, Int. J. Hydrog. Energy 47, 14319–14330 (2022)

    Article  CAS  Google Scholar 

  9. S.R. Yousefi, M. Ghanbari, O. Amiri, Z. Marzhoseyni, P. Mehdizadeh, M. Hajizadeh Oghaz, M. Salavati Niasari, J. Am. Ceram. Soc. 104, 2952–2965 (2021)

    Article  CAS  Google Scholar 

  10. S.R. Yousefi, O. Amiri, M. Salavati-Niasari, Ultrason. Sonochem. 58, 104619 (2019)

    Article  CAS  Google Scholar 

  11. N. Xu, X. Shen, S. Cui, X. Yi, Sci. Eng. Compos. Mater. 25, 565 (2018)

    Article  CAS  Google Scholar 

  12. G.F. Cai, J.P. Tu, J. Zhang, Y.J. Mai, Y. Lu, C.D. Gu, X.L. Wang, Nanoscale 4, 5724 (2012)

    Article  CAS  Google Scholar 

  13. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, M. Hassanpour, J. Mater. Sci.: Mater. Electron. 27, 1244–1253 (2016)

    CAS  Google Scholar 

  14. S.R. Yousefi, A. Sobhani, H.A. Alshamsi, M. Salavati-Niasari, Rsc Adv. 11, 11500–11512 (2021)

    Article  CAS  Google Scholar 

  15. D.E. Stilwell, S.M. Park, J. Electrochem. Soc. 135, 2254 (1988)

    Article  CAS  Google Scholar 

  16. R. Gangopadhyay, A. De, G. Ghosh, Synth. Met. 123, 21 (2001)

    Article  CAS  Google Scholar 

  17. K.R. Reyes-Gil, Z.D. Stephens, V. Stavila, D.B. Robinson, A.C.S. Appl, Mater. Interfaces 7, 2202 (2015)

    Article  CAS  Google Scholar 

  18. Z. Bi, X. Li, Y. Chen, X. Xu, S. Zhang, Q. Zhu, Electrochim. Acta 227, 61 (2017)

    Article  CAS  Google Scholar 

  19. G. Song, J. Han, R. Guo, Synth. Met. 157, 170 (2007)

    Article  CAS  Google Scholar 

  20. J. Han, G. Song, R. Guo, J. Polym. Sci., Part A: Polym. Chem. 44, 4229 (2006)

    Article  CAS  Google Scholar 

  21. Q. Li, C.-L. Liang, X.-F. Lu, Y.-X. Tong, G.-R. Li, J. Mater. Chem. A 3, 6432 (2015)

    Article  CAS  Google Scholar 

  22. M.S. Wu, K.C. Huang, Chem Commun (Camb) 47, 12122 (2011)

    Article  CAS  Google Scholar 

  23. M.-S. Wu, H.-W. Chang, J. Phys. Chem. C 117, 2590 (2013)

    Article  CAS  Google Scholar 

  24. D. Ma, G. Shi, H. Wang, Q. Zhang, Y. Li, J. Mater. Chem. A 2, 13541 (2014)

    Article  CAS  Google Scholar 

  25. G. Cai, X. Wang, M. Cui, P. Darmawan, J. Wang, A.L.-S. Eh, P.S. Lee, Nano Energy 12, 258 (2015)

    Article  CAS  Google Scholar 

  26. X.H. Xia, J.P. Tu, J. Zhang, X.L. Wang, W.K. Zhang, H. Huang, Sol. Energy Mater. Sol. Cells 92, 628 (2008)

    Article  CAS  Google Scholar 

  27. M. Jamdegni, A. Kaur, Electrochim. Acta 331, 135359 (2020)

    Article  CAS  Google Scholar 

  28. Y.F. Yuan, X.H. Xia, J.B. Wu, Y.B. Chen, J.L. Yang, S.Y. Guo, Electrochimica Acta 56, 1208 (2011)

    Article  CAS  Google Scholar 

  29. H. Gu, Y. Huang, X. Zhang, Q. Wang, J. Zhu, L. Shao, N. Haldolaarachchige, D.P. Young, S. Wei, Z. Guo, Polymer 53, 801 (2012)

    Article  CAS  Google Scholar 

  30. X.H. Xia, J.P. Tu, J. Zhang, X.L. Wang, W.K. Zhang, H. Huang, Nanotechnology 19, 465701 (2008)

    Article  CAS  Google Scholar 

  31. A.C. Sonavane, A.I. Inamdar, H.P. Deshmukh, P.S. Patil, J. Phys. D: Appl. Phys. 43(31), 315102 (2010)

    Article  Google Scholar 

  32. Y.G. Wang, H.Q. Li, Y.Y. Xia, Adv. Mater. 18, 2619 (2006)

    Article  CAS  Google Scholar 

  33. Y. Wei, X. Tang, Y. Sun, W.W. Focke, J. Polym. Sci., Part A: Polym. Chem. 27, 2385 (1989)

    Article  CAS  Google Scholar 

  34. M.-S. Wu, C.-H. Yang, Appl. Phys. Lett. 91(3), 0331096 (2007)

    Article  Google Scholar 

  35. H. Wei, J. Zhu, S. Wu, S. Wei, Z. Guo, Polymer 54, 1820 (2013)

    Article  CAS  Google Scholar 

  36. K. Zhou, H. Wang, J. Jiu, J. Liu, H. Yan, K. Suganuma, Chem. Eng. J. 345, 290 (2018)

    Article  CAS  Google Scholar 

  37. H. Wei, X. Yan, S. Wu, Z. Luo, S. Wei, Z. Guo, J. Phys. Chem. C 116, 25052 (2012)

    Article  CAS  Google Scholar 

  38. S. Zhang, G. Sun, Y. He, R. Fu, Y. Gu, S. Chen, A.C.S. Appl, Mater. Interfaces 9, 16426 (2017)

    Article  CAS  Google Scholar 

  39. S. Zhang, S. Chen, Y. Cao, F. Yang, H. Peng, B. Yan, H. Jiang, Y. Gu, M. Xiang, J. Mater. Sci.: Mater. Electron. 30, 13497 (2019)

    CAS  Google Scholar 

  40. A.C. Nwanya, C.J. Jafta, P.M. Ejikeme, P.E. Ugwuoke, M.V. Reddy, R.U. Osuji, K.I. Ozoemena, F.I. Ezema, Electrochim. Acta 128, 218 (2014)

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (NSFC) 51975101. The analytical measurements were supported by the State Key Laboratory of Fine Chemical Engineering and the Large-scale Instruments and Equipment Sharing Platform of Dalian University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengming Jiang or Qinglei Guo.

Ethics declarations

Conflict of Interest

The authors have no conflicts to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 926 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, K., Peng, Y., Sun, N. et al. A high-contrast electrochromic film with fast switching speed based on large-scale grown nanorod array. J Mater Sci: Mater Electron 34, 1079 (2023). https://doi.org/10.1007/s10854-023-10448-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10448-0

Navigation