Skip to main content

Advertisement

Log in

Electrospun ZnO–SnO2 heterojunction belts for hydrogen sensing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Chemiresistive sensors are promising devices for sensing hydrogen gas in a broad range of applications including fuel cells, hydrogen storage systems, petroleum refinement, and diagnosis of oil-insulated transformers. Herein, electrospun ZnO–SnO2 belts (BLs) were synthesized and applied as resistive-type sensing layers for hydrogen sensing. The ZnO–SnO2 BLs containing 20 mol% of Zn relative to Sn showed a response (Ra/Rg, Ra: resistance in air, Rg: resistance in target gas) of 6.7, fast response speed (3.6 s), and a distinguishable selectivity toward 5 ppm of hydrogen at 400 °C in the presence of formaldehyde, methane, ammonia, carbon monoxide, and carbon dioxide gases. The sensor displayed a repeatable response when subjected to 15 cycles of alternate air and 5 ppm hydrogen exposure. A unique hydrogen sensing performance of the BLs was attributed to their belt morphology, numerous surface pores, smaller crystal size, ZnO/SnO2 heterojunction, and ZnO metallization following hydrogen exposure. The present synthetic method paves the way for generating microstructures with smaller diffusion length that overcomes the shortcomings of non-porous and/or thick materials while providing a potential platform for reliable and enhanced hydrogen sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. A. Kovač, M. Paranos, D. Marciuš, Int. J. Hydrogen Energy 46, 10016 (2021)

    Article  Google Scholar 

  2. N. Armaroli, V. Balzani, ChemSusChem 4, 21 (2011)

    Article  CAS  Google Scholar 

  3. T. Hübert, L. Boon-Brett, G. Black, U. Banach, Sens. Atuators B 157, 329 (2011)

    Article  Google Scholar 

  4. L. Boon-Brett, J. Bousek, G. Black, P. Moretto, P. Castello, T. Hübert, U. Banach, Int. J. Hydrogen Energy 35, 373 (2010)

    Article  CAS  Google Scholar 

  5. V. Palmisano, E. Weidner, L. Boon-Brett, C. Bonato, F. Harskamp, P. Moretto, M.B. Post, R. Burgess, C. Rivkin, W.J. Buttner, Int. J. Hydrogen Energy 40, 11740 (2015)

    Article  CAS  Google Scholar 

  6. G. Korotcenkov, S.D. Han, J.R. Stetter, Chem. Rev. 109, 1402 (2009)

    Article  CAS  Google Scholar 

  7. P.S. Chauhan, S. Bhattacharya, Int. J. Hydrogen Energy 44, 26076 (2019)

    Article  CAS  Google Scholar 

  8. S.-W. Chiu, K.-T. Tang, Sensors 13, 14214 (2013)

    Article  CAS  Google Scholar 

  9. W.-T. Koo, H.-J. Cho, D.-H. Kim, Y.H. Kim, H. Shin, R.M. Penner, I.-D. Kim, ACS Nano 14, 14284 (2020)

    Article  CAS  Google Scholar 

  10. A. Mirzaei, H.R. Yousefi, F. Falsafi, M. Bonyani, J.-H. Lee, J.-H. Kim, H.W. Kim, S.S. Kim, Int. J. Hydrogen Energy 44, 20552 (2019)

    Article  CAS  Google Scholar 

  11. D.H. Yang, T.T.T. Nguyen, S.T. Navale, L.H.T. Nguyen, Y.T. Dang, N.X.D. Mai, T.B. Phan, J.-Y. Kim, T.L.H. Doan, S.S. Kim, Sens. Actuators B 368, 132120 (2022)

    Article  CAS  Google Scholar 

  12. L. Song, J. Ahn, D.-H. Kim, H. Shin, I.-D. Kim, ACS Appl. Mater. Interfaces 14, 28378 (2022)

    Article  CAS  Google Scholar 

  13. W.T. Koo, S. Qiao, A.F. Ogata, G. Jha, J.S. Jang, V.T. Chen, I.D. Kim, R.M. Penner, ACS Nano 11, 9276 (2017)

    Article  CAS  Google Scholar 

  14. I. Darmadi, F.A.A. Nugroho, C. Langhammer, ACS Sens. 5, 3306 (2020)

    Article  CAS  Google Scholar 

  15. A. Kumar, K. Chen, T. Thundat, M.T. Swihart, ACS Appl. Mater. Interfaces 15, 5439 (2023)

    Article  CAS  Google Scholar 

  16. F. Yang, S.C. Kung, M. Cheng, J.C. Hemminger, R.M. Penner, ACS Nano 4, 5233 (2010)

    Article  CAS  Google Scholar 

  17. C.C. Ndaya, N. Javahiraly, A. Brioude, Sensors 19, 4478 (2019)

    Article  CAS  Google Scholar 

  18. Y. Luo, C. Zhang, B. Zheng, X. Geng, M. Debliquy, Int. J. Hydrogen Energy 42, 20386 (2017)

    Article  CAS  Google Scholar 

  19. Z. Li, Z. Yao, A.A. Haidry, T. Plecenik, L. Xie, L. Sun, Q. Fatima, Int. J. Hydrogen Energy 43, 21114 (2018)

    Article  CAS  Google Scholar 

  20. J. Lee, S.Y. Kim, H.S. Yoo, W. Lee, Sens. Actuators B 368, 132236 (2022)

    Article  CAS  Google Scholar 

  21. Z. Chen, K. Hu, P. Yang, X. Fu, Z. Wang, S. Yang, J. Xiong, X. Zhang, Y. Hu, H. Gu, Int. J. Hydrogen Energy 811, 152086 (2019)

    CAS  Google Scholar 

  22. K. Hu, F. Wang, Z. Shen, H. Liu, J. Xiong, J. Alloys Compd. 850, 156663 (2021)

    Article  CAS  Google Scholar 

  23. K. Hu, F. Wang, Y. Yan, H. Liu, Z. Shen, Ceram. Int. 47, 15228 (2021)

    Article  CAS  Google Scholar 

  24. S. Park, T. Hong, J. Jung, C. Lee, Curr. Appl. Phys. 14, 1171 (2014)

    Article  Google Scholar 

  25. Z. Li, S. Yan, Z. Wu, H. Li, J. Wang, W. Shen, Z. Wang, Y. Fu, Int. J. Hydrogen Energy 43, 22746 (2018)

    Article  CAS  Google Scholar 

  26. S. Yang, Q. Li, C. Li, T. Cao, T. Wang, F. Fan, X. Zhang, Y. Fu, ACS Appl. Mater. Interfaces 13, 52754 (2021)

    Article  CAS  Google Scholar 

  27. J. Hu, Y. Sun, Y. Xue, M. Zhang, P. Li, K. Lian, S. Zhuiykov, W. Zhang, Y. Chen, Sens. Actuators B 257, 124 (2018)

    Article  CAS  Google Scholar 

  28. J.H. Yu, G.M. Choi, Sens. Actuators B 52, 251 (1998)

    Article  CAS  Google Scholar 

  29. M. Akbari-Saatlu, M. Procek, C. Mattsson, G. Thungstrom, T. Torndahl, B. Li, J. Su, W. Xiong, H.H. Radamson, ACS Appl. Nano Mater. 5, 6954 (2022)

    Article  CAS  Google Scholar 

  30. C. Cheng, B. Liu, H. Yang, W. Zhou, L. Sun, R. Chen, S.F. Yu, J. Zhang, H. Gong, H. Sun, ACS Nano 3, 3069 (2009)

    Article  CAS  Google Scholar 

  31. Y. Zheng, J. Wang, P. Yao, Sens. Actuators B 156, 723 (2011)

    Article  CAS  Google Scholar 

  32. H. Huang, H. Gong, C.L. Chow, J. Guo, T.J. White, M.S. Tse, O.K. Tan, Adv. Funct. Mater. 21, 2680 (2011)

    Article  CAS  Google Scholar 

  33. A. Katoch, Z.U. Abideen, H.W. Kim, S.S. Kim, ACS Appl. Mater. Interfaces 8, 2486 (2016)

    Article  CAS  Google Scholar 

  34. K. Hu, F. Wang, Z. Shen, H. Liu, W. Zeng, Y. Wang, Ceram. Int. 46, 21439 (2020)

    Article  CAS  Google Scholar 

  35. G. Sakai, N. Matsunaga, K. Shimanoe, N. Yamazoe, Sens. Actuators B 80, 125 (2001)

    Article  CAS  Google Scholar 

  36. P.M. Bulemo, H.J. Cho, D.H. Kim, I.D. Kim, ACS Appl. Mater. Interfaces 10, 18183 (2018)

    Article  CAS  Google Scholar 

  37. M.H. Kim, J.S. Jang, W.T. Koo, S.J. Choi, S.J. Kim, D.H. Kim, I.D. Kim, ACS Appl. Mater. Interfaces 10, 20643 (2018)

    Article  CAS  Google Scholar 

  38. P.M. Bulemo, D.-H. Kim, I.-D. Kim, Sens. Actuators B 344, 130208 (2021)

    Article  CAS  Google Scholar 

  39. M. Sreekanth, S. Ghosh, S.K. Mehta, A.K. Ganguli, M. Jha, CrystEngComm 19, 2264 (2017)

    Article  Google Scholar 

  40. C.M. Hung, H.V. Phuong, V. Van Thinh, N.T. Thang, N.H. Hanh, N.Q. Dich, N. Van Duy, N. Van Hieu, N.D. Hoa, Sens. Actuators A 317, 112454 (2021)

    Article  CAS  Google Scholar 

  41. Y. Zhao, G. Dong, L. Duan, J. Qiao, D. Zhang, L. Wang, Y. Qiu, RSC Adv. 2, 5307 (2012)

    Article  CAS  Google Scholar 

  42. P.H. Phuoc, N.N. Viet, C.M. Hung, N.D. Hoa, N. Van Duy, H.S. Hong, N. Van Hieu, Sens. Actuators B 334, 129606 (2021)

    Article  CAS  Google Scholar 

  43. J.S. Jang, S.J. Kim, S.J. Choi, N.H. Kim, M. Hakim, A. Rothschild, I.D. Kim, Nanoscale 7, 16417 (2015)

    Article  CAS  Google Scholar 

  44. H.-J. Cho, S.-J. Choi, N.-H. Kim, I.-D. Kim, Sens. Actuators B 304, 127350 (2020)

    Article  CAS  Google Scholar 

  45. R. Wang, A.W. Sleight, D. Cleary, Chem. Mater. 8, 433 (1996)

    Article  CAS  Google Scholar 

  46. G.Y. Chai, O. Lupan, E.V. Rusu, G.I. Stratan, V.V. Ursaki, V. Şontea, H. Khallaf, L. Chow, Sens. Actuators A 176, 64 (2012)

    Article  CAS  Google Scholar 

  47. J.Y. Park, S.-W. Choi, S.S. Kim, J. Phys. D: Appl. Phys. 44, 205403 (2011)

    Article  Google Scholar 

  48. C. Wang, G. Zhou, J. Li, B. Yan, W. Duan, Phys. Rev. B 77, 245303 (2008)

    Article  Google Scholar 

  49. A. Huang, Q. Liu, N. Wang, Y. Zhu, J.r. Caro, J. Am. Chem. Soc. 136, 14686 (2014)

    Article  CAS  Google Scholar 

  50. A.T. Güntner, S. Abegg, K. Wegner, S.E. Pratsinis, Sens. Actuators B 257, 916 (2018)

    Article  Google Scholar 

  51. R.W. Triebe, F.H. Tezel, Gas Sep. Purif. 9, 223 (1995)

    Article  CAS  Google Scholar 

  52. Z. Yuan, A. Govind Rajan, R.P. Misra, L.W. Drahushuk, K.V. Agrawal, M.S. Strano, D. Blankschtein, ACS Nano 11, 7974 (2017)

    Article  CAS  Google Scholar 

  53. J.-H. Kim, A. Mirzaei, H.W. Kim, S.S. Kim, Sens. Actuators B 297, 126693 (2019)

    Article  CAS  Google Scholar 

  54. K. Singh, R. Malakar, R. Narzary, P. Kakoty, B. Mondal, Sens. Lett. 15, 771 (2017)

    Article  Google Scholar 

  55. X. Zhang, J. Sun, T. Chen, C. Xiang, Y. Zhao, N. Zhang, Ionics 28, 3013 (2022)

    Article  CAS  Google Scholar 

Download references

Funding

The author declares that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All work including study conception and design, data collection, analysis, interpretation, drafting, and revision of the manuscript was done by the author.

Corresponding author

Correspondence to Peresi Majura Bulemo.

Ethics declarations

Competing Interests

The author declares no relevant financial and non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulemo, P.M. Electrospun ZnO–SnO2 heterojunction belts for hydrogen sensing. J Mater Sci: Mater Electron 34, 982 (2023). https://doi.org/10.1007/s10854-023-10445-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10445-3

Navigation