Skip to main content
Log in

In-depth study of the effect of annealing temperature on the structural, chemical, and optical properties of MAPI thin films prepared by a one-step deposition method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The goal of this work is to study the effect of annealing temperature Ta on the properties of CH3NH3PbI3 (MAPI) thin films deposited on glass substrate through structural, compositional, and optical characterization. The films were obtained by one-step deposition method in which an anti-solvent drip was implemented with some delay during spin coating of the precursor mixture, followed by thermal annealing to promote solvent evaporation and rapid crystallization of the film. Properties of the perovskite film after thermal annealing were characterized by different analytical methods. The morphology and roughness of the films were studied by scanning electron microscopy and atomic force microscopy. The crystalline phase was characterized by X-ray diffraction. The optical properties were also determined by UV–Vis spectroscopy. Finally, the elemental composition was analyzed by secondary ion mass spectroscopy. In the temperature range of 100–160 °C, variable average grain diameters between ~ 200 and ~ 500 nm were obtained. However, higher post-deposition thermal annealing temperatures produce clusters of PbI2 between CH3NH3PbI3 grain boundaries. XRD measurements showed a decrease in MAPI crystallite size and an increase in PbI2 crystallite size and amount with increasing annealing temperature. In addition, higher Ta results in a modification of the absorption/reflectance spectra and a red shift of an optical band gap. The results of this study can be useful to produce thin films of MAPI with tunable optical and electronic properties for optimizing the performance of photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data sets generated and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M.K. Nazeeruddin, M. Grätzel, Effect of annealing temperature on film morphology of organic-inorganic hybrid pervoskite solid-state solar cells. Adv. Funct. Mater. (2014). https://doi.org/10.1002/adfm.201304022

    Article  Google Scholar 

  2. S. Tombe, G. Adam, H. Heilbrunner, D.H. Apaydin, C. Ulbricht, N.S. Sariciftci, C.J. Arendse, E. Iwuoha, M.C. Scharber, Optical and electronic properties of mixed halide (X = I, Cl, Br) methylammonium lead perovskite solar cells. J. Mater. Chem. C (2017). https://doi.org/10.1039/c6tc04830g

    Article  Google Scholar 

  3. M.T. Ahmed, S. Islam, M.S. Bashar, M.A. Hossain, F. Ahmed, Synthesis and characterizations of CH3NH3PbI3: ZnS microrods for optoelectronic applications. Adv. Mater. Sci. Eng. (2022). https://doi.org/10.1155/2022/7606339

    Article  Google Scholar 

  4. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r

    Article  CAS  Google Scholar 

  5. M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y.B. Cheng, L. Spiccia, A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. Int. Ed. (2014). https://doi.org/10.1002/anie.201405334

    Article  Google Scholar 

  6. T. Wu, Z. Qin, Y. Wang, Y. Wu, W. Chen, S. Zhang, M. Cai, S. Dai, J. Zhang, J. Liu, Z. Zhou, X. Liu, H. Segawa, H. Tan, Q. Tang, J. Fang, Y. Li, L. Ding, Z. Ning, Y. Qi, Y. Zhang, L. Han, The main progress of perovskite solar cells in 2020–2021. Nano-Micro Lett. (2021). https://doi.org/10.1007/s40820-021-00672-w

    Article  Google Scholar 

  7. O. Shargaieva, F. Lang, J. Rappich, T. Dittrich, M. Klaus, M. Meixner, C. Genzel, N.H. Nickel, Influence of the grain size on the properties of CH3NH3PbI3 thin films. ACS Appl. Mater. Interfaces (2017). https://doi.org/10.1021/acsami.7b10056

    Article  Google Scholar 

  8. Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. (2014). https://doi.org/10.1002/adma.201401685

    Article  Google Scholar 

  9. T. Su, X. Li, Y. Zhang, F. Zhang, Z. Sheng, Temperature-modulated crystal growth and performance for highly reproducible and efficient perovskite solar cells. Phys. Chem. Chem. Phys. (2017). https://doi.org/10.1039/c7cp00563f

    Article  Google Scholar 

  10. C. Bi, Y. Shao, Y. Yuan, Z. Xiao, C. Wang, Y. Gao, J. Huang, Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing. J. Mater. Chem. A (2014). https://doi.org/10.1039/c4ta04007d

    Article  Google Scholar 

  11. Q. Dong, Y. Yuan, Y. Shao, Y. Fang, Q. Wang, J. Huang, Abnormal crystal growth in CH3NH3PbI3xClx using a multi-cycle solution coating process. Energy Environ. Sci. (2015). https://doi.org/10.1039/c5ee01179e

    Article  Google Scholar 

  12. C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, J. Huang, Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. (2015). https://doi.org/10.1038/ncomms8747

    Article  Google Scholar 

  13. Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, J. Huang, Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. (2014). https://doi.org/10.1039/c4ee01138d

    Article  Google Scholar 

  14. D. Yang, Z. Yang, W. Qin, Y. Zhang, S. Liu, C. Li, Alternating precursor layer deposition for highly stable perovskite films towards efficient solar cells using vacuum deposition. J. Mater. Chem. A (2015). https://doi.org/10.1039/c5ta01824b

    Article  Google Scholar 

  15. M. Reinoso, C.A. Otálora, G. Gordillo, Improvement properties of hybrid Halide perovskite thin films prepared by sequential evaporation for planar solar cells. Materials (2019). https://doi.org/10.3390/ma12091394

    Article  Google Scholar 

  16. P. Pistor, T. Burwig, C. Brzuska, B. Weber, W. Fränzel, Thermal stability and miscibility of co-evaporated methyl ammonium lead halide (MAPbX3, X = I, Br, Cl) thin films analysed by: in situ X-ray diffraction. J. Mater. Chem. A (2018). https://doi.org/10.1039/c8ta02775g

    Article  Google Scholar 

  17. T. Burwig, P. Pistor, Reaction kinetics of the thermal decomposition of MAPbI3 thin films. Phys. Rev. Mater. (2021). https://doi.org/10.1103/PhysRevMaterials.5.065405

    Article  Google Scholar 

  18. N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. (2014). https://doi.org/10.1038/nmat4014

    Article  Google Scholar 

  19. K.H. Hwang, S.H. Nam, D.I. Kim, H.J. Seo, J.H. Boo, The influence of DMSO and ether via fast-dipping treatment for a perovskite solar cell. Sol. Energy Mater. Sol. Cells (2018). https://doi.org/10.1016/j.solmat.2017.10.024

    Article  Google Scholar 

  20. M. Konstantakou, D. Perganti, P. Falaras, T. Stergiopoulos, Anti-solvent crystallization strategies for highly efficient perovskite solar cells. Crystals (2017). https://doi.org/10.3390/cryst7100291

    Article  Google Scholar 

  21. Q. Guesnay, F. Sahli, C. Ballif, Q. Jeangros, Vapor deposition of metal halide perovskite thin films: process control strategies to shape layer properties. APL Mater. (2021). https://doi.org/10.1063/5.0060642

    Article  Google Scholar 

  22. J.H. Im, H.S. Kim, N.G. Park, Morphology-photovoltaic property correlation in perovskite solar cells: one-step versus two-step deposition of CH3NH3PbI3. APL Mater. (2014). https://doi.org/10.1063/1.4891275

    Article  Google Scholar 

  23. R.K. Misra, S. Aharon, B. Li, D. Mogilyansky, I. Visoly-Fisher, L. Etgar, E.A. Katz, Temperature- and component-dependent degradation of perovskite photovoltaic materials under concentrated sunlight. J. Phys. Chem. Lett. (2015). https://doi.org/10.1021/jz502642b

    Article  Google Scholar 

  24. T. Du, C.H. Burgess, J. Kim, J. Zhang, J.R. Durrant, M.A. McLachlan, Formation, location and beneficial role of PbI2 in lead halide perovskite solar cells. Sustain. Energy Fuels (2017). https://doi.org/10.1039/c6se00029k

    Article  Google Scholar 

  25. Y. Wu, A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng, L. Han, Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci. (2014). https://doi.org/10.1039/c4ee01624f

    Article  Google Scholar 

  26. X. Ren, Z. Yang, D. Yang, X. Zhang, D. Cui, Y. Liu, Q. Wei, H. Fan, S.F. Liu, Modulating crystal grain size and optoelectronic properties of perovskite films for solar cells by reaction temperature. Nanoscale (2016). https://doi.org/10.1039/c5nr08935b

    Article  Google Scholar 

  27. L.C. Chen, C.C. Chen, J.C. Chen, C.G. Wu, Annealing effects on high-performance CH3NH3PbI3 perovskite solar cells prepared by solution-process. Sol. Energy (2015). https://doi.org/10.1016/j.solener.2015.10.019

    Article  Google Scholar 

  28. W. Nie, H. Tsai, R. Asadpour, J.C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.L. Wang, A.D. Mohite, High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science (2015). https://doi.org/10.1126/science.aaa0472

    Article  Google Scholar 

  29. Q. Chen, H. Zhou, T.-B. Song, S. Luo, Z. Hong, H.-S. Duan, L. Dou, Y. Liu, Y. Yang, Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 14(7), 4158–4163 (2014). https://doi.org/10.1021/nl501838y

    Article  CAS  Google Scholar 

  30. Z. Song, S.C. Watthage, A.B. Phillips, B.L. Tompkins, R.J. Ellingson, M.J. Heben, Impact of processing temperature and composition on the formation of methylammonium lead iodide perovskites. Chem. Mater. (2015). https://doi.org/10.1021/acs.chemmater.5b01017

    Article  Google Scholar 

  31. A.K. Al-Mousoi, M.K.A. Mohammed, Engineered surface properties of MAPI using different antisolvents for hole transport layer-free perovskite solar cell (HTL-free PSC). J. Sol–Gel. Sci. Technol. (2020). https://doi.org/10.1007/s10971-020-05380-2

    Article  Google Scholar 

  32. S. Chen, X. Xiao, B. Chen, L.L. Kelly, J. Zhao, Y. Lin, M.F. Toney, J. Huang, Crystallization in one-step solution deposition of perovskite films: upward or downward? Sci. Adv. (2021). https://doi.org/10.1126/sciadv.abb2412

    Article  Google Scholar 

  33. N.J. Zadeh, M.B. Zarandi, M.R. Nateghi, Effect of crystallization strategies on CH3NH3PbI3 perovskite layer deposited by spin coating method: dependence of photovoltaic performance on morphology evolution. Thin Solid Films (2018). https://doi.org/10.1016/j.tsf.2018.03.038

    Article  Google Scholar 

  34. W. Belayachi, S. Boujmiraz, S. Zouhair, K. Yaşaroğlu, G. Schmerber, J.L. Rehspringer, T. Fix, A. Slaoui, M. Abd-Lefdil, A. Dinia, Study of hybrid organic–inorganic halide perovskite solar cells based on MAI[(PbI2)1x(CuI)x] absorber layers and their long-term stability. J. Mater. Sci.: Mater. Electron. (2021). https://doi.org/10.1007/s10854-021-06582-2

    Article  Google Scholar 

  35. K. Fatema, M.T. Ahmed, M.K. Hossain, F. Ahmed, Structural and morphological properties of single and mixed halide Pb-based perovskites. Adv. Condens. Matter Phys. 2022, 1–7 (2022). https://doi.org/10.1155/2022/6001569

    Article  CAS  Google Scholar 

  36. M. Kim, G.-H. Kim, T.K. Lee, I.W. Choi, H.W. Choi, Y. Jo, Y.J. Yoon, J.W. Kim, J. Lee, D. Huh, H. Lee, S.K. Kwak, J.Y. Kim, D.S. Kim, Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3(9), 2179–2192 (2019). https://doi.org/10.1016/j.joule.2019.06.014

    Article  CAS  Google Scholar 

  37. Z. Wu, B. Jian, and H. Hsu, Photoluminescence characterizations of highly ambient-air-stable CH3NH3PbI3/PbI2 heterostructure. Opt. Mater. Express 9, 1882–1892 (2019).https://doi.org/10.1364/OME.9.001882

    Article  CAS  Google Scholar 

  38. K.A. Uyanga, S.C. Ezike, A.T. Onyedika, A.B. Kareem, T.M. Chiroma, Effect of acetic acid concentration on optical properties of lead acetate based methylammonium lead iodide perovskite thin film. Opt. Mater. 109, 110456 (2020). https://doi.org/10.1016/j.optmat.2020.110456

    Article  CAS  Google Scholar 

  39. M.T. Ahmed, S. Islam, F. Ahmed, Comparative study on the crystallite size and bandgap of perovskite by diverse methods. Adv. Condens. Matter Phys. 2022, 7 (2022). https://doi.org/10.1155/2022/9535932

    Article  CAS  Google Scholar 

  40. F. Palazon, D. Pérez-del-Rey, B. Dänekamp, C. Dreessen, M. Sessolo, P.P. Boix, H.J. Bolink, Room-temperature cubic phase crystallization and high stability of vacuum-deposited methylammonium lead triiodide thin films for high-efficiency solar cells. Adv. Mater. (2019). https://doi.org/10.1002/adma.201902692

    Article  Google Scholar 

  41. Y. Rakita, S.R. Cohen, N.K. Kedem, G. Hodes, D. Cahen, Mechanical properties of APbX3 (A = Cs or CH3NH3; X = i or Br) perovskite single crystals. MRS Commun. (2015). https://doi.org/10.1557/mrc.2015.69

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Ing. Miguel Ángel Avendaño Ibarra, M.C. María Georgina Ramírez Cruz & Ing. Tavira from the Department of CINVESTAV-IE-SEES; Ing. Ángel Guillen of the Physics Department of CINVESTAV-Zacatenco; Ing. Adrian Itzmoyotl Toxqui from the Microelectronics Laboratory of INAOE. The authors would like to thank Lic. Martha E. Velázquez and M.C. Amina Flores Becker for the English revision of this manuscript. And CONACYT for the Ph.D. grants awarded to Jose Juan Diaz, Beatriz Estefania Montaño Flores.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of the study. Material preparation, data collection, and analysis were performed by JJD, SM, IK, and BM. All authors commented on earlier versions of the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Beatriz Montaño.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montaño, B., Diaz, J.J., Koudriavtsev, I. et al. In-depth study of the effect of annealing temperature on the structural, chemical, and optical properties of MAPI thin films prepared by a one-step deposition method. J Mater Sci: Mater Electron 34, 1016 (2023). https://doi.org/10.1007/s10854-023-10437-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10437-3

Navigation