Skip to main content

Advertisement

Log in

One-step deposition of nanostructured Ni(OH)2/rGO for supercapacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To use nanostructured materials for practical applications, scaled quantity production becomes a necessary part of synthesis. The present work demonstrates the simple one-step easy synthesis of Ni(OH)2/rGO nanocomposites for supercapacitor applications at scaled quantities. Direct deposition of Ni(OH)2/rGO on nickel foam for a supercapacitor was performed using a hydrothermal method. Depending on the size of the autoclave, it is possible to deposit an active mass on a selected substrate. Crystallography and microstructural study results showed the formation of good-quality and required morphology material. The electrochemical characterization performed on Ni(OH)2/rGO/Ni exhibited a specific capacitance of 1900 F g−1 at a current density of 1 A g−1. Capacitance retention of 92.5% is demonstrated after 5000 cycles at a scan rate of 50 mV s−1. The obtained results suggest that the synthesized material can be used for supercapacitor applications at the mass scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. S.A. Mozaffari, S.H. Mahmoudi Najafi, Z. Norouzi, Hierarchical NiO@Ni(OH)2 nanoarrays as high-performance supercapacitor electrode material. Electrochim. Acta. 368, 137633 (2021). https://doi.org/10.1016/j.electacta.2020.137633

    Article  CAS  Google Scholar 

  2. B. Kurt Urhan, H. Öztürk Doğan, E. Çepni, M. Eryiğit, Ü. Demir, T. Öznülüer Özer, Ni(OH)2-electrochemically reduced graphene oxide nanocomposites as anode electrocatalyst for direct ethanol fuel cell in alkaline media. Chem. Phys. Lett. 763, 138208 (2021). https://doi.org/10.1016/j.cplett.2020.138208

    Article  CAS  Google Scholar 

  3. C. Lv, X. Wang, L. Gao, A. Wang, S. Wang, R. Wang, X. Ning, Y. Li, D.W. Boukhvalov, Z. Huang, C. Zhang, Triple functions of Ni(OH)2 on the Surface of WN Nanowires remarkably promoting electrocatalytic activity in full water splitting. ACS Catal. 10, 13323–13333 (2020). https://doi.org/10.1021/acscatal.0c02891

    Article  CAS  Google Scholar 

  4. S. Park, Z. Khan, T.J. Shin, Y. Kim, H. Ko, Rechargeable Na/Ni batteries based on the Ni(OH)2/NiOOH redox couple with high energy density and good cycling performance. J. Mater. Chem. A 7, 1564–1573 (2019). https://doi.org/10.1039/C8TA10830G

    Article  CAS  Google Scholar 

  5. P.E. Lokhande, K. Pawar, U.S. Chavan, Chemically deposited ultrathin α-Ni(OH)2 nanosheet using surfactant on Ni foam for high performance supercapacitor application. Mater. Sci. Energy Technol. 1, 166–170 (2018). https://doi.org/10.1016/j.mset.2018.07.001

    Article  Google Scholar 

  6. E.G.C. Neiva, M.M. Oliveira, M.F. Bergamini, L.H. Marcolino, A.J.G. Zarbin, One material, multiple functions: graphene/Ni(OH)2 thin films applied in batteries, electrochromism and sensors. Sci. Rep. 6, 33806 (2016). https://doi.org/10.1038/srep33806

    Article  CAS  Google Scholar 

  7. H. Wang, J. Gao, Z. Li, Y. Ge, K. Kan, K. Shi, One-step synthesis of hierarchical α-Ni(OH)2 flowerlike architectures and their gas sensing properties for NOx at room temperature. CrystEngComm 14, 6843 (2012). https://doi.org/10.1039/c2ce25553g

    Article  CAS  Google Scholar 

  8. P.E. Lokhande, U.S. Chavan, A. Pandey, Materials and fabrication methods for electrochemical supercapacitors: overview. Electrochem. Energ. Rev. 3, 155–186 (2020). https://doi.org/10.1007/s41918-019-00057-z

    Article  CAS  Google Scholar 

  9. P.E. Lokhande, U.S. Chavan, Nanoflower-like Ni(OH)2 synthesis with chemical bath deposition method for high performance electrochemical applications. Mater. Lett. 218, 225–228 (2018). https://doi.org/10.1016/j.matlet.2018.02.012

    Article  CAS  Google Scholar 

  10. P.E. Lokhande, U.S. Chavan, Nanostructured Ni(OH)2/rGO composite chemically deposited on Ni foam for high performance of supercapacitor applications. Mater. Sci. Energy Technol. 2, 52–56 (2019). https://doi.org/10.1016/j.mset.2018.10.003

    Article  Google Scholar 

  11. P.E. Lokhande, U.S. Chavan, S. Bhosale, A. Kalam, S. Deokar, New-generation materials for flexible supercapacitors, in Flexible Supercapacitor Nanoarchitectonics, 1st edn., ed. by Inamuddin, M.I. Ahamed, R. Boddula, T. Altalhi (Wiley, Hoboken, 2021), pp. 277–313

    Chapter  Google Scholar 

  12. N. Lakal, S. Dubal, P.E. Lokhande, Supercapacitors: An Introduction Nanotechnology in the Automotive Industry (Elsevier, Netherlands, 2022), pp. 459–466

    Google Scholar 

  13. P.E. Lokhande, A. Pakdel, H.M. Pathan, D. Kumar, D.-V.N. Vo, A. Al-Gheethi, A. Sharma, S. Goel, P.P. Singh, B.-K. Lee, Prospects of MXenes in energy storage applications. Chemosphere 297, 134225 (2022). https://doi.org/10.1016/j.chemosphere.2022.134225

    Article  CAS  Google Scholar 

  14. P.E. Lokhande, P.P. Singh, D.-V.N. Vo, D. Kumar, K. Balasubramanian, A. Mubayi, A. Srivastava, A. Sharma, Bacterial nanocellulose: Green polymer materials for high performance energy storage applications. J. Environ. Chem. Eng. 10, 108176 (2022). https://doi.org/10.1016/j.jece.2022.108176

    Article  CAS  Google Scholar 

  15. P.E. Lokhande, S. Kulkarni, S. Chakrabarti, H.M. Pathan, M. Sindhu, D. Kumar, J. Singh, A. Kumar, Y. Kumar Mishra, D.-C. Toncu, M. Syväjärvi, A. Sharma, A. Tiwari, The progress and roadmap of metal–organic frameworks for high-performance supercapacitors. Coord. Chem. Rev. 473, 214771 (2022). https://doi.org/10.1016/j.ccr.2022.214771

    Article  CAS  Google Scholar 

  16. P. Lokhande, U. Chavan, Cyclic voltammetry behavior modeling of fabricated nanostructured Ni(OH) 2 electrode using artificial neural network for supercapacitor application. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 234, 2563–2568 (2020). https://doi.org/10.1177/0954406220907615

    Article  CAS  Google Scholar 

  17. Z. Sun, Z. Han, H. Liu, D. Wu, X. Wang, Nanoflaky nickel-hydroxide-decorated phase-change microcapsules as smart electrode materials with thermal self-regulation function for supercapacitor application. Renew. Energy 174, 557–572 (2021). https://doi.org/10.1016/j.renene.2021.04.089

    Article  CAS  Google Scholar 

  18. P.E. Lokhande, U.S. Chavan, All-Solid-state asymmetric supercapacitor based on Ni–Co layered double hydroxide and rGO nanocomposite deposited on Ni foam. J. Electrochem. Energy Convers. Storage 17, 031013 (2020). https://doi.org/10.1115/1.4045977

    Article  CAS  Google Scholar 

  19. B.R. Wiston, M. Ashok, Electrochemical performance of hydrothermally synthesized flower-like α-nickel hydroxide. Vacuum 160, 12–17 (2019). https://doi.org/10.1016/j.vacuum.2018.11.014

    Article  CAS  Google Scholar 

  20. A.A. Khaleed, A. Bello, J.K. Dangbegnon, M.J. Madito, O. Olaniyan, F. Barzegar, K. Makgopa, K.O. Oyedotun, B.W. Mwakikunga, S.C. Ray, N. Manyala, Solvothermal synthesis of surfactant free spherical nickel hydroxide/graphene oxide composite for supercapacitor application. J. Alloys Compd. 721, 80–91 (2017). https://doi.org/10.1016/j.jallcom.2017.05.310

    Article  CAS  Google Scholar 

  21. M. Fu, Z. Zhu, W. Chen, H. Yu, R. Lv, Carbon cloth supported flower-like porous nickel-based electrodes boosting ion/charge transfer characteristics of flexible supercapacitors. Carbon 199, 520–528 (2022). https://doi.org/10.1016/j.carbon.2022.07.032

    Article  CAS  Google Scholar 

  22. W. Li, Z. Huang, Y. Jia, Y. Cui, P. Shi, T. Li, H. Yue, J. Wang, W. He, X. Lou, Sulfate assisted synthesis of α-type nickel hydroxide nanowires with 3D reticulation for energy storage in hybrid supercapacitors. Mater. Chem. Front. 6, 94–102 (2022). https://doi.org/10.1039/D1QM01298C

    Article  CAS  Google Scholar 

  23. U.S. Chavan, P.E. Lokhande, S. Bhosale, Nickel hydroxide nanosheets grown on nickel foam for high performance supercapacitor applications. Mater. Technol. 37, 728–734 (2022). https://doi.org/10.1080/10667857.2021.1873636

    Article  CAS  Google Scholar 

  24. M. Zhan, C. Ge, S. Hussain, A.S. Alkorbi, R. Alsaiari, N.A. Alhemiary, G. Qiao, G. Liu, Enhanced NO2 gas-sensing performance by core-shell SnO2/ZIF-8 nanospheres. Chemosphere 291, 132842 (2022). https://doi.org/10.1016/j.chemosphere.2021.132842

    Article  CAS  Google Scholar 

  25. T. Shi, H. Hou, S. Hussain, C. Ge, M.A. Alsaiari, A.S. Alkorbi, G. Liu, R. Alsaiari, G. Qiao, Efficient detection of hazardous H2S gas using multifaceted Co3O4/ZnO hollow nanostructures. Chemosphere 287, 132178 (2022). https://doi.org/10.1016/j.chemosphere.2021.132178

    Article  CAS  Google Scholar 

  26. S. Hussain, N. Farooq, A.S. Alkorbi, R. Alsaiari, N.A. Alhemiary, M. Wang, G. Qiao, Polyhedral Co3O4@ZnO nanostructures as proficient photocatalysts for vitiation of organic dyes from waste water. J. Mol. Liq. 362, 119765 (2022). https://doi.org/10.1016/j.molliq.2022.119765

    Article  CAS  Google Scholar 

  27. N.I. Zaaba, K.L. Foo, U. Hashim, S.J. Tan, W.-W. Liu, C.H. Voon, Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia Eng. 184, 469–477 (2017). https://doi.org/10.1016/j.proeng.2017.04.118

    Article  CAS  Google Scholar 

  28. Y. Qi, H. Qi, J. Li, C. Lu, Synthesis, microstructures, and UV–vis absorption properties of β-Ni(OH)2 nanoplates and NiO nanostructures. J. Cryst. Growth 310, 4221–4225 (2008). https://doi.org/10.1016/j.jcrysgro.2008.06.047

    Article  CAS  Google Scholar 

  29. M.K. Carpenter, D.A. Corrigan, Photoelectrochemistry of nickel hydroxide thin films. J. Electrochem. Soc. 136, 1022–1026 (1989). https://doi.org/10.1149/1.2096777

    Article  CAS  Google Scholar 

  30. D.S. Hall, D.J. Lockwood, C. Bock, B.R. MacDougall, Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proc. R. Soc. A 471, 20140792 (2015). https://doi.org/10.1098/rspa.2014.0792

    Article  Google Scholar 

  31. J. Liu, Y. Wang, R. Hu, H.A. Munir, H. Liu, High-performance supercapacitor electrode based on 3D rose-like β-Ni(OH)2/rGO nanohybrid. J. Phys. Chem. Solids 138, 109297 (2020). https://doi.org/10.1016/j.jpcs.2019.109297

    Article  CAS  Google Scholar 

  32. H. Wang, Y. Song, W. Liu, L. Yan, Three dimensional Ni(OH)2/rGO hydrogel as binder-free electrode for asymmetric supercapacitor. J. Alloy. Compd. 735, 2428–2435 (2018). https://doi.org/10.1016/j.jallcom.2017.11.358

    Article  CAS  Google Scholar 

  33. P. Shen, H. Zhang, S. Zhang, L. Fei, Fabrication of completely interface-engineered Ni(OH)2/rGO nanoarchitectures for high-performance asymmetric supercapacitors. Appl. Surf. Sci. 460, 65–73 (2018). https://doi.org/10.1016/j.apsusc.2017.09.145

    Article  CAS  Google Scholar 

  34. H. Zhang, X. Zhang, D. Zhang, X. Sun, H. Lin, C. Wang, Y. Ma, One-step electrophoretic deposition of reduced graphene oxide and Ni(OH)2 composite films for controlled syntheses supercapacitor electrodes. J. Phys. Chem. B 117, 1616–1627 (2013). https://doi.org/10.1021/jp305198j

    Article  CAS  Google Scholar 

  35. B. Dong, H. Zhou, J. Liang, L. Zhang, G. Gao, S. Ding, One-step synthesis of free-standing α-Ni(OH)2 nanosheets on reduced graphene oxide for high-performance supercapacitors. Nanotechnology 25, 435403 (2014). https://doi.org/10.1088/0957-4484/25/43/435403

    Article  CAS  Google Scholar 

Download references

Acknowledgements

RNB thanks to the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT, NRF-2022R1A4A1032832).

Author information

Authors and Affiliations

Authors

Contributions

VSK: data curation, formal analysis, CVJ: investigation, writing—original draft, PEL: data curation, writing, methodology, conceptualization RNB: formal analysis, editing original draft, S-WK: investigation, conceptualization, methodology, AAY: investigation, data curation, writing—original draft, HMP: conceptualization, funding acquisition, project administration, supervision.

Corresponding authors

Correspondence to P. E. Lokhande, Anuja A. Yadav or Habib M. Pathan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadam, V.S., Jagtap, C.V., Lokhande, P.E. et al. One-step deposition of nanostructured Ni(OH)2/rGO for supercapacitor applications. J Mater Sci: Mater Electron 34, 1083 (2023). https://doi.org/10.1007/s10854-023-10433-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10433-7

Navigation