Skip to main content
Log in

Modification of free-volume defects in the GaS2–Ga2S3–CsCl glasses

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Modification of free-volume positron trapping defects in the GaS2–Ga2S3–CsCl chalcogenide glasses was studied using positron annihilation lifetime spectroscopy and Doppler broadening of annihilation radiation methods. It is shown that the addition of CsCl to the main glass matrix leads to agglomeration of internal free-volume defects, which are di- or tri-atomic vacancies. However, an excessive amount of CsCl component causes a decrease in the size and content of these defects in the internal structure of the glass against the background of water adsorption in nanovoids with a radius of 0.3 nm. The obtained results are confirmed by normal and abnormal trends in the correlation of the S parameter, which characterizes the annihilation of positrons with low-momentum valence electrons and the W parameter, which corresponds to the annihilation of positrons with high-momentum core electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. J.L. Adam, L. Calvez, J. Trolès, V. Nazabal, Chalcogenide glasses for infrared photonics. Int. J. Appl. Glass Sci. 6(3), 287–294 (2015). https://doi.org/10.1111/ijag.12136

    Article  CAS  Google Scholar 

  2. V. Nazabal, J.L. Adam, Infrared luminescence of chalcogenide glasses doped with rare earth ions and their potential applications. Opt. Mater. X 15, 100168 (2022). https://doi.org/10.1016/j.omx.2022.100168

    Article  CAS  Google Scholar 

  3. P. Lucas, Z. Yang, M.K. Fah, T. Luo, S. Jiang, C. Boussard-Pledel et al., Telluride glasses for far infrared photonic applications. Opt. Mater. Express 3(8), 1049–1058 (2013). https://doi.org/10.1364/OME.3.001049

    Article  CAS  Google Scholar 

  4. P. Patra, K. Annapurna, Transparent tellurite glass-ceramics for photonics applications: a comprehensive review on crystalline phases and crystallization mechanisms. Prog. Mater. Sci. 125, 100890 (2022). https://doi.org/10.1016/j.pmatsci.2021.100890

    Article  CAS  Google Scholar 

  5. W.A. Pisarski, Rare earth doped glasses/ceramics: synthesis, structure, properties and their optical applications. Materials 15(22), 8099 (2022). https://doi.org/10.3390/ma15228099

    Article  CAS  Google Scholar 

  6. B. Liu, Y. Mo, Y. Liu, Y. Lu, X. He, Y. Xu et al., Effects of alkali metal ion on imprinting GRIN microstructure in GeS2-Ga2S3-MCl (M = na, K, Cs) glasses for visible to mid-infrared microgratings. Ceram. Int. 48(22), 33122–33134 (2022). https://doi.org/10.1016/j.infrared.2022.104086

    Article  CAS  Google Scholar 

  7. K. Hosoya, Y. Tokuda, A. Okada, T. Wakasugi, K. Kadono, Preparation, properties, and photodoping behavior of GeS2-, Ga2S3-, and Sb2S3-based glasses with excess sulfur and CsCl. J. Mater. Res. 34(16), 2747–2756 (2019). https://doi.org/10.1557/jmr.2019.209

    Article  CAS  Google Scholar 

  8. H. Tao, G. Dong, Y. Zhai, H. Guo, X. Zhao, Z. Wang, Q. Gong, Femtosecond third-order optical nonlinearity of the GeS2-Ga2S3-CdI2 new chalcohalide glasses. Solid State Commun. 138(10–11), 485–488 (2006). https://doi.org/10.1016/j.ssc.2004.02.046

    Article  CAS  Google Scholar 

  9. H. Guo, Y. Zhai, H. Tao, Y. Gong, X. Zhao, Synthesis and properties of GeS2–Ga2S3–PbI2 chalcohalide glasses. Mater. Res. Bull. 42(6), 1111–1118 (2007). https://doi.org/10.1016/j.materresbull.2006.09.007

    Article  CAS  Google Scholar 

  10. S.V. Luniov, A.I. Zimych, P.F. Nazarchuk, V.T. Maslyuk, I.G. Megela, Radiation defects parameters determinationin n-Ge single crystals irradiated by high-energy electrons. Nuclear Phys. Atomic Energy 17(1), 47–52 (2016). https://doi.org/10.15407/jnpae2016.01.047

    Article  Google Scholar 

  11. I. Kebaili, I. Boukhris, Z.A. Alrowaili, M.M. Abutalib, M.S. Al-Buriahi, Characterization of physicochemical properties of As2Se3–GeTe–AgI chalcohalide glasses for solar cell and IR applications: influence of adding AgI. J. Mater. Sci. Mater. Electron. 33(2), 800–809 (2022). https://doi.org/10.1007/s10854-021-07350-y

    Article  CAS  Google Scholar 

  12. G. Dong, H. Tao, X. Xiao, C. Lin, X. Zhao, S. Gu, Study of thermal and optical properties of GeS2–Ga2S3–Ag2S chalcogenide glasses. Mater. Res. Bull. 42(10), 1804–1810 (2007). https://doi.org/10.1016/j.materresbull.2006.12.003

    Article  CAS  Google Scholar 

  13. W. Xu, D. Chen, Q. Yan, J. Ren, G. Chen, Silver metal enhanced photoluminescence of Tm3+ doped GeS2–Ga2S3–CsCl glasses. J. Non-Cryst. Solids 358(23), 3065–3068 (2012). https://doi.org/10.1016/j.jnoncrysol.2012.08.009

    Article  CAS  Google Scholar 

  14. C. Li, H. Liu, G. Zhou, S. Kang, L. Tan, C. Gao, C. Lin, Infrared GRIN GeS2–Sb2S3–CsCl chalcogenide glass–ceramics. J. Am. Ceram. Soc. 105(10), 6007–6012 (2022). https://doi.org/10.1111/jace.18598

    Article  CAS  Google Scholar 

  15. M. Li, Y. Xu, X. Jia, L. Yang, N. Long, Z. Liu, S. Dai, Mid-infrared emission properties of Pr3+-doped Ge-Sb-Se-Ga-I chalcogenide glasses. Opt. Mater. Express 8(4), 992–1000 (2018). https://doi.org/10.1364/OME.8.000992

    Article  CAS  Google Scholar 

  16. X. Shen, F. Chen, X. Lv, S. Dai, X. Wang, W. Zhang et al., Preparation and third-order optical nonlinearity of glass ceramics based on GeS2–Ga2S3–CsCl pseudo-ternary system. J. Non-Cryst. Solids 357(11–13), 2316–2319 (2011). https://doi.org/10.1016/j.jnoncrysol.2011.01.019

    Article  CAS  Google Scholar 

  17. G. Yang, C. Yang, D. Hu, C. Peng, K. Tang, Y. Lu et al., Effect of halogen on imprinting gradient refractive index microstructure in GeS2–Ga2S3–NaX (X = F, Cl, br, I) glasses for broadband infrared diffraction gratings. Ceram. Int. 47(20), 28511–28520 (2021). https://doi.org/10.1016/j.ceramint.2021.07.008

    Article  CAS  Google Scholar 

  18. Y. Zhang, Q. Jiao, B. Ma, C. Lin, X. Liu, S. Dai, Structure and ionic conductivity of new Ga2S3-Sb2S3-NaI chalcogenide glass system. Physica B 570, 53–57 (2019). https://doi.org/10.1016/j.physb.2019.05.026

    Article  CAS  Google Scholar 

  19. Q. Yan, Y. Liu, W. Wang, G. Chen, Luminescence behaviors of the Eu2+ ions in the GeS2-Ga2S3-CsCl chalcohalide glasses. J. Non-Cryst. Solids 357(11–13), 2472–2474 (2011). https://doi.org/10.1016/j.jnoncrysol.2010.11.054

    Article  CAS  Google Scholar 

  20. H. Klym, I. Karbovnyk, M.C. Guidi, O. Hotra, A.I. Popov, Optical and vibrational spectra of CsCl-enriched GeS2-Ga2S3 glasses. Nanoscale Res. Lett. 11(1), 1–6 (2016). https://doi.org/10.1186/s11671-016-1350-8

    Article  CAS  Google Scholar 

  21. A. Kozlovskiy, D.I. Shlimas, M.V. Zdorovets, E. Popova, E. Elsts, A.I. Popov, Investigation of the efficiency of shielding gamma and electron radiation using glasses based on TeO2-WO3-Bi2O3-MoO3-SiO to protect electronic circuits from the negative effects of ionizing radiation. Materials 15(17), 6071 (2022). https://doi.org/10.3390/ma15176071

    Article  CAS  Google Scholar 

  22. K. Tanaka, A. Saitoh, Pulsed light effects in amorphous As2S3. J. Mater. Sci. Mater. Electron. 33, 22029–22052 (2022). https://doi.org/10.1007/s10854-022-08989-x

    Article  CAS  Google Scholar 

  23. I. Hadzaman, H. Klym, O. Shpotuyk, M. Brunner, Temperature sensitive spinel-type ceramics in thick-film multilayer performance for environment sensors. Acta Phys. Polonica-Series Gen. Phys. 117(1), 234 (2010)

    CAS  Google Scholar 

  24. V.P. Savchyn, A.I. Popov, O.I. Aksimentyeva, H. Klym, Y.Y. Horbenko, V. Serga et al., Cathodoluminescence characterization of polystyrene-BaZrO3 hybrid composites. Low Temp. Phys. 42(7), 597–600 (2016). https://doi.org/10.1063/1.4959020

    Article  CAS  Google Scholar 

  25. V.V. Halyan, V.O. Yukhymchuk, Y.G. Gule, I.V. Kityk, Y. Zhydachevskyy, I.A. Ivashchenko et al., Specific features of stokes photoluminescence of the La2S3–Ga2S3–Er2S3 glasses. Opt. Mater. 128, 112394 (2022). https://doi.org/10.1016/j.optmat.2022.112394

    Article  CAS  Google Scholar 

  26. P. Naresh, M. Kostrzewa, M.G. Brik, A.S.S. Reddy, N.K. Mohan, V.R. Kumar et al., Nd3+-Doped lead boro selenate glass: a new efficient system for near‐infrared 1.06 µm laser emission. Phys. Status Solidi (a) 217(24), 2000602 (2020). https://doi.org/10.1002/pssa.202000602

    Article  CAS  Google Scholar 

  27. R. Golubevas, A. Zarkov, L. Alinauskas, Z. Stankeviciute, G. Balciunas, E. Garskaite, A. Kareiva, Fabrication and investigation of high-quality glass-ceramic (GC)–polymethyl methacrylate (PMMA) composite for regenerative medicine. RSC Adv. 7(53), 33558–33567 (2017). https://doi.org/10.1039/C7RA05188C

    Article  CAS  Google Scholar 

  28. U. Rogulis, E. Elsts, J. Jansons, A. Sarakovskis, G. Doke, A. Stunda, K. Smits, Cathodoluminescence of oxyfluoride glass-ceramics. Radiat. Meas. 56, 120–123 (2013). https://doi.org/10.1016/j.radmeas.2012.12.020

    Article  CAS  Google Scholar 

  29. P.V. Savchyn, V.V. Vistovskyy, A.S. Pushak, A.S. Voloshinovskii, A.V. Gektin, V. Pankratov, A.I. Popov, Synchrotron radiation studies on luminescence of Eu2+-doped LaCl3 microcrystals embedded in a NaCl matrix. Nuclear Instrum. Methods Phys. Res. Section B 274, 78–82 (2012). https://doi.org/10.1016/j.nimb.2011.11.024

    Article  CAS  Google Scholar 

  30. S.V. Luniov, A.I. Zimych, P.F. Nazarchuk, V.T. Maslyuk, I.G. Megela, The impact of radiation defects on the mechanisms of electron scattering in single crystals n-Ge. J. Phys. Stud. 19(4), 4704–4704 (2015). https://doi.org/10.30970/jps.19.4704

    Article  Google Scholar 

  31. A.L. Kozlovskiy, A.S. Seitbayev, D.B. Borgekov, M.V. Zdorovets, Study of the structural, optical and strength properties of glass-like (1 – x)ZnO–0.25Al2O3–0.25 WO3–xBi2O3 Ceramics. Cryst. 12(11), 1527 (2022). https://doi.org/10.3390/cryst12111527

    Article  CAS  Google Scholar 

  32. A.V. Fedosov, S.V. Luniov, S.A. Fedosov, Specific features of intervalley scattering of charge carriers in n-Si at high temperatures. Semicond. 44, 1263–1265 (2010). https://doi.org/10.1134/S1063782610100039

    Article  CAS  Google Scholar 

  33. L.H. Cong, B.C. Gu, X.X. Han, Q.H. Zhao, Z.W. Pan, R. Ye et al., Reconfigurable positron annihilation lifetime spectrometer utilizing a multi-channel digitizer. Nuclear Instrum. Methods Phys. Res. Section A (2019). https://doi.org/10.1134/S1063782610100039

    Article  Google Scholar 

  34. W.J. Legerstee, T. Noort, T.K. van Vliet, H. Schut, E.M. Kelder, Characterisation of defects in porous silicon as an anode material using positron annihilation doppler broadening spectroscopy. Appl. Nanosci. 12(11), 3399–3408 (2022). https://doi.org/10.1007/s13204-022-02550-2

    Article  CAS  Google Scholar 

  35. H. Klym, L. Calvez, A.I. Popov, Free-volume extended defects in structurally modified Ge–Ga–S/Se glasses. Phys. Status Solidi (b) 259(8), 2100472 (2022). https://doi.org/10.1002/pssb.202100472

    Article  CAS  Google Scholar 

  36. H. Klym, A.D.A.M. Ingram, O. Shpotyuk, Free-volume nanostructural transformation in crystallized GeS2–Ga2S3–CsCl glasses. Materialwiss. Werkstofftech. 47(2–3), 198–202 (2016). https://doi.org/10.1002/mawe.201600476

    Article  CAS  Google Scholar 

  37. H. Klym, A. Ingram, O. Shpotyuk, I. Karbovnyk, Influence of CsCl addition on the nanostructured voids and optical properties of 80GeS2-20Ga2S3 glasses. Opt. Mater. 59, 39–42 (2016). https://doi.org/10.1016/j.optmat.2016.03.004

    Article  CAS  Google Scholar 

  38. H. Klym, A. Ingram, O. Shpotyuk, O. Hotra, A.I. Popov, Positron trapping defects in free-volume investigation of Ge–Ga–S–CsCl glasses. Radiat. Meas. 90, 117–121 (2016). https://doi.org/10.1016/j.radmeas.2016.01.023

    Article  CAS  Google Scholar 

  39. P. Masselin, D. Le Coq, L. Calvez, E. Petracovschi, E. Lépine, E. Bychkov, X. Zhang, CsCl effect on the optical properties of the 80GeS2–20Ga2S3 base glass. Appl. Phys. A 106(3), 697–702 (2012). https://doi.org/10.1007/s00339-011-6668-6

    Article  CAS  Google Scholar 

  40. Y. Ledemi, L. Calvez, M. Rozé, X.H. Zhang, B. Bureau, M. Poulain, Y. Messaddeq, Totally visible transparent chloro-sulphide glasses based on Ga2S3-GeS2-CsCl. J. Optoelectron. Adv. Mater. 9(12), 3751 (2007)

    CAS  Google Scholar 

  41. H. Kalman, D. Portnikov, Analyzing bulk density and void fraction: A the effect of archimedes number. Powder Technol. 381, 477–487 (2021). https://doi.org/10.1016/j.powtec.2020.12.014

    Article  CAS  Google Scholar 

  42. R. Golovchak, A. Kozdras, S. Kozyukhin, O. Shpotyuk, High-energy γ-irradiation effect on physical ageing in Ge–Se glasses. Nucl. Instrum. Methods Phys. Res. Section B 267(17), 2958–2961 (2009). https://doi.org/10.1016/j.nimb.2009.06.011

    Article  CAS  Google Scholar 

  43. D. Giebel, J. Kansy, LT10 program for solving basic problems connected with defect detection. Phys. Procedia 35, 122–127 (2012). https://doi.org/10.1016/j.phpro.2012.06.022

    Article  CAS  Google Scholar 

  44. H. Klym, I. Karbovnyk, S. Piskunov, A.I. Popov, Positron annihilation lifetime spectroscopy insight on free volume conversion of nanostructured MgAl2O4 ceramics. Nanomaterials 11(12), 3373 (2021). https://doi.org/10.3390/nano11123373

    Article  CAS  Google Scholar 

  45. H. Klym, A. Ingram, O. Shpotyuk, R. Szatanik, Free-volume study in GeS2-Ga2S3-CsCl chalcohalide glasses using positron annihilation technique. Phys. Procedia 76, 145–148 (2015). https://doi.org/10.1016/j.phpro.2015.10.026

    Article  CAS  Google Scholar 

  46. S. Thraenert, E.M. Hassan, D. Enke, D. Fuerst, R. Krause-Rehberg, Verifying the RTE model: ortho‐positronium lifetime measurement on controlled pore glasses. Phys. Status Solidi C 4(10), 3819–3822 (2007). https://doi.org/10.1002/pssc.200675738

    Article  CAS  Google Scholar 

  47. R. Zaleski, J. Wawryszczuk, T. Goworek, Pick-off models in the studies of mesoporous silica MCM-41. Comparison of various methods of the PAL spectra analysis. Radiat. Phys. Chem. 76(2), 243–247 (2007). https://doi.org/10.1016/j.radphyschem.2006.03.044

    Article  CAS  Google Scholar 

Download references

Acknowledgements

HK would like to thanks Ministry of Education and Science of Ukraine (Project No. 0122U000807) as well as Dr. A. Ingram for assistance in PAL and DRAL experiments and Prof. O. Spotyuk for discussions. In addition, the research of AIP was partly supported by the RADON project (GA 872494) within the H2020-MSCA-RISE-2019 call and COST Action CA20129 “Multiscale Irradiation and Chemistry Driven Processes and Related Technologies” (MultIChem). AIP also thanks to the Institute of Solid-State Physics, University of Latvia. ISSP UL as the Center of Excellence is supported through the Framework Program for European universities, Union Horizon 2020, H2020-WIDESPREAD-01-2016-2017-TeamingPhase2, under Grant Agreement No. 739508, CAMART2 project.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Glasses preparation was performed by LC Investigation, data collection and analysis were performed by HK and AIP. The first draft of the manuscript was written by HK and authors commented on the previous version of the manuscript. Authors read and approved the final manuscript.

Corresponding author

Correspondence to H. Klym.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klym, H., Calvez, L. & Popov, A.I. Modification of free-volume defects in the GaS2–Ga2S3–CsCl glasses. J Mater Sci: Mater Electron 34, 1104 (2023). https://doi.org/10.1007/s10854-023-10431-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10431-9

Navigation