Skip to main content

Advertisement

Log in

Orange peel derived activated carbon for supercapacitor electrode material

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The study of processing biomass waste into porous carbon materials as active electrode materials for energy storage applications has been the subject of immense research interest due to its low cost, abundance of raw materials and environmental friendliness. In this work, orange peel-derived porous carbon material has been produced via carbonization followed by chemical activation with KOH (KOPC). The synthesized materials were characterized using different characterization techniques. Microstructural features confirm that the porous structure has pores in the KOPC material. The Fourier transform infrared and Raman analysis revealed that various functional groups, defects and pores exist in the KOPC sample, which could minimize the diffusion length and facilitate the ion diffusion path for improved electrochemical performances. The electrochemical measurements of KOPC were performed as electrode material with an extended and optimized potential window of 0.0 to −1.2 V. The KOPC-based electrode shows a specific capacitance of 267 F/g at 3 A/g with excellent coulombic efficiency and good cycling stability over 5000 charge–discharge cycles at 50 A/g. Thus, this study will utilize biomass wastes to make efficient energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The used datasheets and materials are available from the corresponding authors on reasonable request.

References

  1. R.M. Elavarasan, G.M. Shafiullah, S. Padmanaban, N.M. Kumar, A. Annam, A.M. Vetrichelvan, L.M. Popa, J.B. Holm-Nielsen, A comprehensive review on renewable energy development, challenges, and policies of leading indian states with an international perspective. IEEE Access 8, 74432–74457 (2020)

    Article  Google Scholar 

  2. P.M. Pataniya, C.K. Sumesh, Paper-based flexible and photosensitive electrodes for electrochemical hydrogen evolution. ACS Appl. Energy Mater. 4, 4815–4822 (2021)

    Article  CAS  Google Scholar 

  3. K.K. Joshi, P.M. Pataniya, V. Patel, C.K. Sumesh, Large-area binder free synthesis of Cu2CoSnS4 on Ag-substrate for electrocatalytic hydrogen evolution. Surf. Interfaces 29, 101807 (2022)

    Article  CAS  Google Scholar 

  4. P.M. Pataniya, V. Patel, C.K. Sumesh, Electrophoretic deposition of MoSe2−MoOx nanosheets for enhanced electrocatalytic hydrogen evolution eeaction. ACS Appl. Energy Mater. 4, 7891–7899 (2021)

    Article  CAS  Google Scholar 

  5. P.M. Pataniya, V. Patel, P. Sahatiya, D.J. Late, C.K. Sumesh, Hydrogen evolution reaction in acidic and basic medium on robust cobalt sulphide electrocatalyst. Surf. Interfaces 34, 102319 (2022)

    Article  CAS  Google Scholar 

  6. H. Lu, X.S. Zhao, Biomass-derived carbon electrode materials for supercapacitors. Sustain. Energy Fuels 1, 1265 (2017)

    Article  CAS  Google Scholar 

  7. Z. Yu, L. Tetard, L. Zhaia, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8(3), 702–730 (2015)

    Article  CAS  Google Scholar 

  8. A. Singh, S.K. Ojha, M. Singh, A.K. Ojha, Controlled synthesis of NiCo2S4@NiCo2O4 core@Shell nanostructured arrays decorated over the rGO sheets for high-performance asymmetric supercapacitor. Electrochim Acta 349, 136349 (2020)

    Article  CAS  Google Scholar 

  9. A. Singh, S.K. Ojha, Designing vertically aligned porous NiCo2O4@MnMoO4 core@shell nanostructures for high-performance asymmetric supercapacitors. J. Coll. Interface Sci. 580, 720–729 (2020)

    Article  CAS  Google Scholar 

  10. P.M. Pataniya, S. Dabhi, V. Patel, C.K. Sumesh, Liquid phase exfoliated ReS2 nanocrystals on paper based electrodes for hydrogen evolution and supercapacitor applications. Surf. Interfaces 34, 102318 (2022)

    Article  CAS  Google Scholar 

  11. J. Wang, X. Zhang, Z. Li, Y. Ma, L. Ma, Recent progress of biomass-derived carbon materials for supercapacitors. J. Power Sources 451, 227794 (2020)

    Article  CAS  Google Scholar 

  12. Y. Wang, M. Zhang, X. Shen, H. Wang, H. Wang, K. Xia, Z. Yin, Y. Zhang, Biomass-derived carbon materials: controllable preparation and versatile applications. Small 17(40), 2008079 (2021)

    Article  CAS  Google Scholar 

  13. A. Singh, B. Ahmed, A. Singh, A.K. Ojha, Photodegradation of phenanthrene catalyzed by rGO sheets and disk like structures synthesized using sugar cane juice as a reducing agent. Spectrochim Acta Part A 204, 603 (2018)

    Article  CAS  Google Scholar 

  14. V.S. Bhat, S. Supriya, G. Hegde, Review-biomass derived carbon materials for electrochemical sensors. J. Electrochem. Soc. 167, 037526 (2020)

    Article  CAS  Google Scholar 

  15. R.S. Varma, Biomass-derived renewable carbonaceous materials for sustainable chemical and environmental applications. ACS Sustain. Chem. Eng. 7, 6458–6470 (2019)

    Article  CAS  Google Scholar 

  16. A.M. Balu, V. Budarin, P.S. Shuttleworth, L.A. Pfaltzgraff, K. Waldron, R. Luque, J.H. Clark, Valorisation of orange peel residues: waste to biochemicals and nanoporous materials. Chem Sus Chem 5(9), 1694–1697 (2012)

    Article  CAS  Google Scholar 

  17. G. Xiong, P. He, Z. Lyu, T. Chen, B. Huang, L. Chen, T.S. Fisher, Bioinspired leaves-on-branchlet hybrid carbon nanostructure for supercapacitors. Nat. Commun. 9(1), 790 (2018)

    Article  Google Scholar 

  18. A. Ariharan, K. Ramesh, R. Vinayagamoorthi, M.S. Rani, B. Viswanathan, S. Ramaprabhu, V. Nandhakumar, Biomass derived phosphorous containing porous carbon material for hydrogen storage and high-performance supercapacitor applications. J. Energy Storage 35, 102185 (2021)

    Article  Google Scholar 

  19. P. Cheng, T. Li, H. Yu, L. Zhi, Z. Liu, Z. Lei, Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors. J. Phys. Chem. C 120, 2079–2086 (2016)

    Article  CAS  Google Scholar 

  20. G. Byatarayappa, V. Guna, M.G. Radhika, K. Venkatesh, Y. Zhao, N. Nagaraju, N. Reddy, K. Nagaraju, KOH-activated microstructured carbon derived from Asclepias syriaca floss for extraordinary 200k cycle stability in supercapacitors. Sustain. Energy Fuels 6, 4034 (2022)

    Article  CAS  Google Scholar 

  21. M.D. Mehare, A.D. Deshmukh, S.J. Dhoble, Bio-waste lemon peel derived carbon based electrode in perspect of supercapacitor. J. Mater. Sci. 32, 14057–14071 (2021)

    CAS  Google Scholar 

  22. C. Ruan, K. Ai, L. Lu, Biomass-derived carbon materials for high-performance supercapacitor electrodes. RSC Adv. 4(58), 30887–30895 (2014)

    Article  CAS  Google Scholar 

  23. S. Ghosh, R. Santhosh, S. Jeniffer, V. Raghavan, G. Jacob, K. Nanaji, P. Kollu, S.K. Jeong, A.N. Grace, Natural biomass derived hard carbon and activated carbons as electrochemical supercapacitor electrodes. Sci. Rep. 9(1), 1–15 (2019)

    Article  Google Scholar 

  24. J. Wang, S. Kaskel, KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 22, 23710 (2012)

    Article  CAS  Google Scholar 

  25. W. Chen, M. Gong, K. Li, M. Xia, Z. Chen, H. Xiao, Y. Fang, Y. Chen, H. Yang, H. Chen, Insight into KOH activation mechanism during biomass pyrolysis: chemical reactions between O-containing groups and KOH. Appl. Energy 278, 115730 (2020)

    Article  CAS  Google Scholar 

  26. M.S. Lal, R. Sundara, Multifunctional high entropy oxides incorporated functionalized biowaste derived activated carbon for electrochemical energy storage and desalination. Electrochim. Acta 405, 139828 (2022)

    Article  CAS  Google Scholar 

  27. G.K. Gupta, P. Sagar, S.K. Pandey, M. Srivastava, A.K. Singh, J. Singh, A. Srivastava, S.K. Srivastava, A. Srivastava, In situ fabrication of activated carbon from a bio-waste desmostachya bipinnata for the improved supercapacitor performance. Nanoscale Res. Lett. 16(1), 1–12 (2021)

    Article  Google Scholar 

  28. Y. Liu, X. Liu, W. Dong, L. Zhang, Q. Kong, W. Wang, Efficient adsorption of sulfamethazine onto modified activated carbon: a plausible adsorption mechanism. Sci. Rep. 7(1), 1–12 (2017)

    Google Scholar 

  29. P. Dubey, V. Shrivastav, A. Kaur, P.H. Maheshwari, S. Sundriyal, Surface and diffusion charge contribution studies of human hair-derived heteroatom-doped porous carbon electrodes for supercapacitors. Energy Fuels 36, 626–637 (2022)

    Article  CAS  Google Scholar 

  30. B. Wang, L. Ji, Y. Yu, N. Wang, J. Wang, J. Zhao, A simple and universal method for preparing N, S co-doped biomass derived carbon with superior performance in supercapacitors. Electrochim. Acta 309, 34–43 (2019)

    Article  CAS  Google Scholar 

  31. B.H. Poornima, T. Vijayakumar, Hydrothermal synthesis of boron -doped porous carbon from Azadirachta Indica wood for supercapacitor application. Inorg. Chem. Commun. 145, 109953 (2022)

    Article  CAS  Google Scholar 

  32. Y. Sun, J. Xue, S. Dong, Y. Zhang, Y. An, B. Ding, T. Zhang, H. Dou, X. Zhang, Biomass-derived porous carbon electrodes for high-performance supercapacitors. J. Mater. Sci. 55(12), 5166–5176 (2020)

    Article  CAS  Google Scholar 

  33. Y. Wang, Q. Qu, S. Gao, G. Tang, K. Liu, S. He, C. Huang, Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon 155, 706–726 (2019)

    Article  CAS  Google Scholar 

  34. A. Singh, S. Kumar, A.K. Ojha, Charcoal derived graphene quantum dots for flexible supercapacitor oriented applications. New J. Chem. 44, 11085 (2020)

    Article  CAS  Google Scholar 

  35. A.R. Selvaraj, D. Chinnadurai, I. Cho, J.S. Bak, K. Prabakar, Bio-waste wood-derived porous activated carbon with tuned microporosity for high performance supercapacitors. J. Energy Storage 52, 104928 (2022)

    Article  Google Scholar 

  36. E.A. Arkhipova, R.Y. Novotortsev, A.S. Ivanov, K.I. Maslakov, S.V. Savilov, Rice husk-derived activated carbon electrode in redox-active electrolyte-new approach for enhancing supercapacitor performance. J. Energy Storage 55, 105699 (2022)

    Article  Google Scholar 

  37. A. Singh, A.K. Ojha, Coal derived graphene as an efficient supercapacitor electrode material. Chem. Phys. 530, 110607 (2020)

    Article  Google Scholar 

  38. A. Singh, S.K. Ojha, A.K. Ojha, Facile synthesis of porous nanostructures of NiCo2O4 grown on rGO sheet for high performance supercapacitors. Synth. Met. 259, 116215 (2020)

    Article  CAS  Google Scholar 

  39. R. Atchudana, T.N.J.I. Edisona, M. Shanmugamb, S. Perumala, R. Vinodhc, T. Somanathand, Y.R. Leea, Biowaste-originated heteroatom-doped porous carbonaceous material for electrochemical energy storage application. J. Ind. Eng. Chem. 98, 308–317 (2021)

    Article  Google Scholar 

  40. S. Sundriyal, V. Shrivastav, A. Kaur, A. Mansi, S.R. Deep, Dhakate, Surface and diffusion charge contribution study of neem leaves derived porous carbon electrode for supercapacitor applications using acidic, basic, and neutral electrolytes. J. Energy Storage 41, 103000 (2021)

    Article  Google Scholar 

  41. R. Devi, V. Kumar, S. Kumar, A.K. Sisodiya, A.K. Mishra, A. Jatrana, A. Kumar, P. Singh, Development of activated carbon by bio waste material for application in supercapacitor electrodes. Mater. Lett. 335, 133830 (2023)

    Article  CAS  Google Scholar 

  42. B.J. Choudhury, H.H. Muigai, P. Kalita, V.S. Moholka, Biomass blend derived porous carbon for aqueous supercapacitors with commercial-level mass loadings and enhanced energy density in redox-active electrolyte. Appl. Surf. Sci. 601, 154202 (2022)

    Article  CAS  Google Scholar 

  43. D.R. Lobato-Peralta, R. Amaro, D.M. Arias, A.K. Cuentas-Gallegos, O.A. Jaramillo-Quintero, P.J. Sebastian, P.U. Okoye, Activated carbon from wasp hive for aqueous electrolyte supercapacitor application. J. Electroanal. Chem. 901, 115777 (2021)

    Article  CAS  Google Scholar 

  44. S. Muduli, S.K. Pati, S.K. Martha, Bio-waste derived carbon nano-onions as an efficient electrode material for symmetric and lead-carbon hybrid ultracapacitors. Int. J. Energy Res. 46, 14074–14087 (2022)

    Article  CAS  Google Scholar 

  45. M. Jayachandran, S.K. Babu, T. Maiyalagan, N. Rajadurai, T. Vijayakumar, Activated carbon derived from bamboo-leaf with effect of various aqueous electrolytes as electrode material for supercapacitor applications. Mater. Lett. 301, 130335 (2021)

    Article  CAS  Google Scholar 

  46. V. Thirumal, K. Dhamodharan, R. Yuvakkumar, G. Ravi, B. Saravanakumar, M. Thambidurai, C. Dang, D. Velauthapillai, Cleaner production of tamarind fruit shell into bio-mass derived porous 3D-activated carbon nanosheets by CVD technique for supercapacitor applications. Chemosphere 282, 131033 (2021)

    Article  CAS  Google Scholar 

  47. Z.S. Iro, C. Subramani, J. Rajendran, A.K. Sundramoorthy, Promising nature-based activated carbon derived from flowers of Borassus flabellifer for supercapacitor applications. Carbon Lett. 31, 1145–1153 (2021)

    Article  Google Scholar 

  48. P. Sharma, D. Singh, M. Minakshi, S. Quadsia, R. Ahuja, Activation-induced surface modulation of biowaste-derived jierarchical porous carbon for supercapacitors. Chem Plus Chem 87, e202200126 (2022)

    CAS  Google Scholar 

  49. H. Quan, W. Tao, Y. Wang, D. Chen, Enhanced supercapacitor performance of Camellia oleifera shell derived hierarchical porous carbon by carbon quantum dots. J. Energy Storage 55, 105573 (2022)

    Article  Google Scholar 

  50. P.L. Taberna, P. Simon, J.F. Fauvarque, Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J. Electrochem. Soc. 150(3), A292–A300 (2003)

    Article  CAS  Google Scholar 

  51. C. Portet, G. Yushin, Y. Gogotsi, Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45, 2511–2518 (2007)

    Article  CAS  Google Scholar 

  52. S. Yoon, J.H. Jang, B.H. Ka, S.M. Oh, Complex capacitance analysis on rate capability of electric-double layer capacitor (EDLC) electrodes of different thickness. Electrochim. Acta 50, 2255–2262 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the instrumentation facilities available in the Institute. We also thank Prof. Ranjan K. Singh, BHU Varanasi, for Raman measurements.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

AS performed all the experiments, data interpretation, write the manuscript. AKO contributed to the overall supervision, and drafting the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Arvind Singh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Ojha, A.K. Orange peel derived activated carbon for supercapacitor electrode material. J Mater Sci: Mater Electron 34, 1003 (2023). https://doi.org/10.1007/s10854-023-10418-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10418-6

Navigation