Skip to main content
Log in

Facile synthesis and tunable microwave absorption properties of N-doped C modified SiC nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

N-doped C modified SiC nanoparticles (SiC@C(N)) with core-shell feature were successfully synthesized by a facile method of dopamine (DA) self-polymerization on SiC combined with heat treatment technology. The SiC@C(N) nanocomposites hold tunable microwave absorption properties by tailoring the dosage of DA precursor. When the mass ratio of SiC to DA is 2:1, the synthesized SiC@C(N) nanocomposites achieved a strong microwave absorption capacity, whose optimal reflection loss reaches − 43.94 dB at a frequency of 7.97 GHz with a thickness of 3.10 mm. And the absorption bandwidth below − 20 dB is 14.78 GHz from 3.22 to 18 GHz, with a thickness range of 1.50−6.00 mm. The SiC surface coated by N-doped C causes an intense interface polarization and defect dipole polarization. Moreover, N-doped C-modified SiC can improve the conductivity of SiC due to increased carrier concentration, thus elevating its conductance loss. As a result, the appropriate N-doped C coating modified SiC makes the SiC@C(N) nanocomposites acquire a combined effect in terms of interface polarization, defect dipole polarization, conductance loss, space-charge polarization, and weak magnetic loss, which optimizes the balance between impedance matching and attenuation capacity, thus resulting in excellent microwave absorption performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. M. Green, X.B. Chen, J. Materiomics 5(4), 503 (2019). https://doi.org/10.1016/j.jmat.2019.07.003

    Article  Google Scholar 

  2. Z.X. Zhou, W.J. Zhao, Z.W. Zhao, H.Q. Fu, Ind. Eng. Chem. Res. 60, 12343 (2021). https://doi.org/10.1021/acs.iecr.1c02279

    Article  CAS  Google Scholar 

  3. B.S. Dai, J.Y. Li, W.Z. Wang, X.G. Liu, Y.J. Qi, Y. Qi, Mater. Lett. 281, 128667 (2020). https://doi.org/10.1016/j.matlet.2020.128667

    Article  CAS  Google Scholar 

  4. F.B. Meng, H.G. Wang, F. Huang, Y.F. Guo, Z.Y. Wang, D. Hui, Z.W. Zhou, Compos. B Eng. 137, 260 (2018). https://doi.org/10.1016/j.compositesb.2017.11.023

    Article  CAS  Google Scholar 

  5. H.J. Kim, G.H. Kang, S.H. Kim, S. Park, Nanomaterials 11, 2910 (2021). https://doi.org/10.3390/nano11112910

    Article  CAS  Google Scholar 

  6. A. Hua, F. Wei, D.S. Pan, L. Yang, Y. Feng, M.Z. Li, Y. Wang, J. An, D.Y. Geng, H.Y. Liu, Z.H. Wang, W. Liu, S. Ma, J. He, Z.D. Zhang, Appl. Phys. Lett. 111, 223105 (2017). https://doi.org/10.1063/1.5003983

    Article  CAS  Google Scholar 

  7. Z.R. Jia, K.J. Lin, G.L. Wu, H. Xing, H.J. Wu, Nano 13, 1830005 (2018). https://doi.org/10.1142/s1793292018300050

    Article  CAS  Google Scholar 

  8. L. Saini, R.K. Jani, Y. Janu, M. Kumar, M.K. Patra, A. Dixit, Ceram. Int. 47, 22397 (2021). https://doi.org/10.1016/j.ceramint.2021.04.249

    Article  CAS  Google Scholar 

  9. X. Wang, Q.F. Li, Z.J. Su, W. Gong, R.Z. Gong, Y.J. Chen, V.G. Harris, J. Alloys Compd. 643, 111 (2015). https://doi.org/10.1016/j.jallcom.2015.04.122

    Article  CAS  Google Scholar 

  10. R. Joshi, C. Singh, J. Singh, D. Kaur, S.B. Narang, R.B. Jotania, J. Mater. Sci. Mater. Electron. 28, 11969 (2017). https://doi.org/10.1007/s10854-017-7006-3

    Article  CAS  Google Scholar 

  11. C. Singh, H. Kaur, S.B. Narang, P. Kaur, R. Kaur, T. Dhiman, J. Alloys Compd. 683, 302 (2016). https://doi.org/10.1016/j.jallcom.2016.04.205

    Article  CAS  Google Scholar 

  12. D.D. Han, S.C. Xu, S.W. Or, S.L. Ho, B. Liu, Mater. Lett. 198, 69 (2017). https://doi.org/10.1016/j.matlet.2017.04.015

    Article  CAS  Google Scholar 

  13. L.G. Yan, J.B. Wang, X.H. Han, Y. Ren, Q.F. Liu, F.S. Li, Nanotechnology 21, 095708 (2010). https://doi.org/10.1088/0957-4484/21/9/095708

    Article  CAS  Google Scholar 

  14. H. Wang, Y.Y. Dai, W.J. Gong, D.Y. Geng, S. Ma, D. Li, W. Liu, Z.D. Zhang, Appl. Phys. Lett. 102, 223113 (2013). https://doi.org/10.1063/1.4809675

    Article  CAS  Google Scholar 

  15. R.Y. Tan, J.T. Zhou, Z.J. Yao, B. Wei, Z. Li, Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2020.09.040

    Article  Google Scholar 

  16. L. Ji, X.L. Wang, G.M. Shi, F.N. Shi, Q. Li, X.K. Bao, J. Mater. Sci. Mater. Electron. 32, 6830 (2021). https://doi.org/10.1007/s10854-021-05388-6

    Article  CAS  Google Scholar 

  17. Z. Yang, Z.M. Li, T. Ning, M.L. Zhang, Y.X. Yan, D.Y. Zhang, G.Z. Cao, J. Alloys Compd. 777, 1039 (2019). https://doi.org/10.1016/j.jallcom.2018.11.067

    Article  CAS  Google Scholar 

  18. J.T. Zhou, B. Wei, Z.J. Yao, H.Y. Lin, R.Y. Tan, W.J. Chen, X.L. Guo, J. Alloys Compd. 819, 153021 (2020). https://doi.org/10.1016/j.jallcom.2019.153021

    Article  CAS  Google Scholar 

  19. X.L. Su, W.C. Zhou, J. Xu, J.B. Wang, X.H. He, C. Fu, Z.M. Li, J. Am. Ceram. Soc. 95, 1388 (2012). https://doi.org/10.1111/j.1551-2916.2011.04996.x

    Article  CAS  Google Scholar 

  20. X.L. Ye, Z.F. Chen, S.F. Ai, B. Hou, J.X. Zhang, X.H. Liang, Q.B. Zhou, H.Z. Liu, S. Cui, J. Adv. Ceram. 8, 479 (2019). https://doi.org/10.1007/s40145-019-0328-2

    Article  CAS  Google Scholar 

  21. P. Zhou, J.H. Chen, M. Liu, P. Jiang, B. Li, X.M. Hou, Int. J. Miner Metall. Mater. 24, 804 (2017). https://doi.org/10.1007/s12613-017-1464-8

    Article  CAS  Google Scholar 

  22. S. Dong, Y.X. Chen, C.Q. Hong, J. Alloys Compd. 838, 155558 (2000). https://doi.org/10.1016/j.jallcom.2020.155558

    Article  CAS  Google Scholar 

  23. J.L. Kuang, Q. Qin, T. Xiao, X.J. Hou, P. Jiang, Q. Wang, W.B. Cao, Mater. Lett. 245, 90 (2019). https://doi.org/10.1016/j.matlet.2019.02.099

    Article  CAS  Google Scholar 

  24. M.X. Sun, X.L. Lv, A.M. Xie, W.C. Jiang, F. Wu, J. Mater. Chem. C 4, 8897 (2016). https://doi.org/10.1039/c6tc03162e

    Article  CAS  Google Scholar 

  25. C.Y. Liang, Z.J. Wang, A.C.S. Appl, Mater. Interfaces 9, 40690 (2017). https://doi.org/10.1021/acsami.7b13063

    Article  CAS  Google Scholar 

  26. K. Zhang, M.X. Sun, W.C. Jiang, Y. Wang, D.R. Wang, F. Wu, A.M. Xie, W. Dong, RSC Adv. 6, 43056 (2016). https://doi.org/10.1039/c6ra06663a

    Article  CAS  Google Scholar 

  27. S. Dong, X.H. Zhang, X.T. Li, J.M. Chen, P. Hu, J.C. Han, Chem. Eng. J. 392, 123817 (2020). https://doi.org/10.1016/j.cej.2019.123817

    Article  CAS  Google Scholar 

  28. L. Yang, Y. Chen, Z.Z. Xu, H. Xia, T. Natuski, Y.S. Xi, Q.Q. Ni, Carbon 204, 377 (2023). https://doi.org/10.1016/j.carbon.2022.12.045

    Article  CAS  Google Scholar 

  29. A. Rinaldi, A. Proietti, A. Tamburrano, M.S. Sarto, IEEE Trans. Electromagn. Compat. 60, 1454 (2018). https://doi.org/10.1109/temc.2017.2775660

    Article  Google Scholar 

  30. Z. Xu, Y.C. Du, D.W. Liu, Y.H. Wang, W.J. Ma, Y. Wang, P. Xu, X.J. Han, ACS Appl. Mater. Interfaces 11, 4268 (2019). https://doi.org/10.1021/acsami.8b19201

    Article  CAS  Google Scholar 

  31. Y.L. Zhou, N. Wang, X.H. Qu, F.R. Huang, Y.P. Duan, X.F. Zhang, X.L. Dong, Z.D. Zhang, Nanoscale 11, 19994 (2019). https://doi.org/10.1039/c9nr07111c

    Article  CAS  Google Scholar 

  32. F. Shahzad, S. Yu, P. Kumar, J.W. Lee, Y.H. Kim, S.M. Hong, C.M. Koo, Compos. Struct. 133, 1267 (2015). https://doi.org/10.1016/j.compstruct.2015.07.036

    Article  Google Scholar 

  33. M.J. Cui, S.M. Ren, H.C. Zhao, Q.J. Xue, L.P. Wang, Chem. Eng. J. 335, 255 (2018). https://doi.org/10.1016/j.cej.2017.10.172

    Article  CAS  Google Scholar 

  34. F. Tan, M. Liu, S.Y. Ren, Sci. Rep. 7, 5735 (2017). https://doi.org/10.1038/s41598-017-06303-y

    Article  CAS  Google Scholar 

  35. A.T. Jin, Y.T. Wang, K.L. Lin, L.Y. Jiang, Bioact Mater. 5, 522 (2020). https://doi.org/10.1016/j.bioactmat.2020.04.003

    Article  Google Scholar 

  36. Y.Y. Lu, Y.T. Wang, H.L. Li, Y. Lin, Z.Y. Jiang, Z.X. Xie, Q. Kuang, L.S. Zheng, ACS Appl. Mater. Interfaces 7, 13604 (2015). https://doi.org/10.1021/acsami.5b03177

    Article  CAS  Google Scholar 

  37. Z. Zafar, Z.H. Ni, X. Wu, Z.X. Shi, H.Y. Nan, J. Bai, L.T. Sun, Carbon 61, 57 (2013). https://doi.org/10.1016/j.carbon.2013.04.065

    Article  CAS  Google Scholar 

  38. C.H. Zhang, L. Fu, N. Liu, M.H. Liu, Y.Y. Wang, Z.F. Liu, Adv. Mater. 23, 1020 (2011). https://doi.org/10.1002/adma.201004110

    Article  CAS  Google Scholar 

  39. H.Y. Wang, B. Li, J.X. Teng, H.L. Zhu, Y.X. Qi, L.W. Yin, H. Li, N. Lun, Y.J. Bai, Electrochim. Acta 257, 56 (2017). https://doi.org/10.1016/j.electacta.2017.10.066

    Article  CAS  Google Scholar 

  40. T. Yang, S.L. Chen, X.X. Li, X.J. Xu, F.M. Gao, L. Wang, J.H. Chen, W.Y. Yang, X.M. Hou, X.S. Fang, Adv. Funct. Mater. 29, 1806250 (2019). https://doi.org/10.1002/adfm.201806250

    Article  CAS  Google Scholar 

  41. S. Contarini, S.P. Howlett, C. Rizzo, B.A. De Angelis, Appl. Surf. Sci. 51, 177 (1991). https://doi.org/10.1016/0169-4332(91)90400-E

    Article  CAS  Google Scholar 

  42. J. Gao, J.Y. Yu, L. Zhou, J. Muhammad, X.L. Dong, Y.N. Wang, H.T. Yu, X. Quan, S.J. Li, Y.G. Jung, Nano Res. 10, 2644 (2017). https://doi.org/10.1007/s12274-017-1467-9

    Article  CAS  Google Scholar 

  43. F.C. Zheng, Y. Yang, Q.W. Chen, Nat. Commun. 5, 5261 (2014). https://doi.org/10.1038/ncomms6261

    Article  CAS  Google Scholar 

  44. D.C. Wei, Y.Q. Liu, Y. Wang, H.L. Zhang, L.P. Huang, G. Yu, Nano Lett. 9, 1752 (2009). https://doi.org/10.1021/nl803279t

    Article  CAS  Google Scholar 

  45. P. Chamoli, S.K. Singh, M.J. Akhtar, M.K. Das, K.K. Kar, Phys. E Low Dimens Syst Nanostruct. 103, 25 (2018). https://doi.org/10.1016/j.physe.2018.05.020

    Article  CAS  Google Scholar 

  46. P.B. Liu, Y.Q. Zhang, J. Yan, Y. Huang, L. Xia, Z.X. Guang, Chem. Eng. J. 368, 285 (2019). https://doi.org/10.1016/j.cej.2019.02.193

    Article  CAS  Google Scholar 

  47. Y.H. Xie, W.J. Li, H.W. Huang, D.X. Dong, X.Y. Zhang, L. Zhang, Y. Chen, X.X. Sheng, X. Lu, ACS Sustain. Chem. Eng. 8, 8448 (2020). https://doi.org/10.1021/acssuschemeng.0c02959

    Article  CAS  Google Scholar 

  48. X.F. Zhou, B.B. Wang, Z.R. Jia, X.D. Zhang, X.H. Liu, K.K. Wang, B.H. Xu, G.L. Wu, J. Colloid Interface Sci. 582, 515 (2021). https://doi.org/10.1016/j.jcis.2020.08.087

    Article  CAS  Google Scholar 

  49. X.L. Wang, G.M. Shi, Y.Y. Guan, Y.J. Zhang, D. Li, J. Mater. Sci. Mater. Electron 32, 19020 (2021). https://doi.org/10.1007/s10854-021-06417-0

    Article  CAS  Google Scholar 

  50. B. Zhao, Y. Li, J.W. Liu, L. Fan, K. Gao, Z.Y. Bai, L.Y. Liang, X.Q. Guo, R. Zhang, CrystEngComm 21, 816 (2019). https://doi.org/10.1039/C8CE01677A

    Article  CAS  Google Scholar 

  51. Y.X. Li, X.F. Liu, R.G. Liu, X.Y. Pang, Y.H. Zhang, G.W. Qin, X.F. Zhang, Carbon 139, 181 (2018). https://doi.org/10.1016/j.carbon.2018.06.030

    Article  CAS  Google Scholar 

  52. C.H. Tian, Y.C. Du, C.S. Cui, Z.L. Deng, J.L. Xue, P. Xu, R. Qiang, Y. Wang, X.J. Han, J. Mater. Sci. 52, 6349 (2017). https://doi.org/10.1007/s10853-017-0866-3

    Article  CAS  Google Scholar 

  53. X.K. Bao, G.M. Shi, X.L. Wang, Q. Li, F.N. Shi, S.T. Li, J. Mater. Sci. Mater. Electron. 32, 1007 (2020). https://doi.org/10.1007/s10854-020-04876-5

    Article  CAS  Google Scholar 

  54. S. Singh, A. Sinha, R.H. Zunke, A. Kumar, D. Singh, Adv. Powder Technol. 29, 2019 (2018). https://doi.org/10.1016/j.apt.2018.05.008

    Article  CAS  Google Scholar 

  55. A. Kumar, V. Agarwala, D. Singh, Ceram. Int. 40, 1797 (2014). https://doi.org/10.1016/j.ceramint.2013.07.080

    Article  CAS  Google Scholar 

  56. C. Yan, X.Q. Cheng, Y. Zhang, D.Z. Yin, C.H. Gong, L.G. Yu, J.W. Zhang, Z.J. Zhang, J. Phys. Chem. C 116, 26006 (2012). https://doi.org/10.1021/jp306305m

    Article  CAS  Google Scholar 

  57. X.D. Zhang, Z.T. Zhang, S. Akhmadaliev, S.Q. Zhou, Y.Y. Wu, B. Guo, Vacuum 184, 109849 (2021). https://doi.org/10.1016/j.vacuum.2020.109849

    Article  CAS  Google Scholar 

  58. C. Romero-Muñiz, P. Pou, R. Pérez, Carbon 159, 102 (2020). https://doi.org/10.1016/j.carbon.2019.12.007

    Article  CAS  Google Scholar 

  59. B. Huang, J.L. Yue, Y.S. Wei, X.Z. Huang, X.Z. Tang, Z.J. Du, Appl. Surf. Sci. 483, 98 (2019). https://doi.org/10.1016/j.apsusc.2019.03.301

    Article  CAS  Google Scholar 

  60. Y. Liu, M.G.B. Drew, H.X. Li, Y. Liu, Mater. Chem. Phys. 243, 122624 (2020). https://doi.org/10.1016/j.matchemphys.2020.122624

    Article  CAS  Google Scholar 

  61. Z. Ma, C.T. Cao, Q.F. Liu, J.B. Wang, Chin. Phys Lett. 29, 038401 (2012). https://doi.org/10.1088/0256-307x/29/3/038401

    Article  Google Scholar 

  62. X. Wang, F. Pan, Z. Xiang, Q.W. Zeng, K. Pei, R.C. Che, W. Lu, Carbon 157, 130 (2020). https://doi.org/10.1016/j.carbon.2019.10.030

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Province Nature Science Foundation of Liaoning Province (20180550564), the National Natural Science Foundation of China (21571132).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. XGW carried out the experiment, analyzed the data. And the first draft was written by XGW, and all authors co-authored previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gui-Mei Shi.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest, financial interests, or personal relationship that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XG., Shi, GM., Shi, FN. et al. Facile synthesis and tunable microwave absorption properties of N-doped C modified SiC nanoparticles. J Mater Sci: Mater Electron 34, 1072 (2023). https://doi.org/10.1007/s10854-023-10409-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10409-7

Navigation