Skip to main content

Advertisement

Log in

Fabrication of a novel rGO encapsulated nickel cobalt chalcogenide electrocatalyst as an efficient counter electrode to boost efficiency of dye-sensitized solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Many materials have been explored as a counter electrode material to replace highly expensive platinum electrode in dye-sensitized solar cells (DSSCs). In this work, Cobalt–Nickel chalcogenide (Ni2CoS4/rGO) hybrid composite have been synthesised by facile ultra-sonication method. The various instrumentation techniques such as powder X-ray Diffraction (XRD), Scanning Electron Microscopy, Transmission Electron Microscopy, Raman, Ultra-Violet (UV), Photoluminescence (PL) are used to characterize the composite and illustrate the encapsulation of rGO. XRD studies disclosed the cubic phase crystalline system of all samples and crystallite size was noticed between 24.2 and 39.1 nm. The Ni2CoS4 is strongly encapsulated in the rGO sheets, which increases the surface area. The composition of Ni, Co, C, S and O was evaluated by Energy Dispersive X-ray analysis. UV-DRS analysis reveals that the optical band gap was decreased from 2.75 to 2.32 eV. Moreover, rGO incorporation improves the charge transfer separation, which was confirmed by PL studies. The textural properties of the Ni2CoS4/rGO are dramatically improved due to their high surface area (88.7 m2/g) and porous nature (46.5 nm), which is higher than bare Ni2CoS4 (44.6 m2/g and 33.3 nm). DSSCs have been fabricated with as-synthesized materials as counter electrodes. The outcomes showed that incorporation of rGO enhances the electron transport and reduced photo generated charge recombination in Ni2CoS4. Photovoltaic performance results revealed that owing to the huge surface area and porous nature of the Ni2CoS4/rGO composite, it exhibit outstanding power conversion efficiency of 8.62%, this is significantly better than bare Ni2CoS4 (3.56%). The rGO encapsulated Ni2CoS4 hybrid material as counter electrode thus offers a promising low-cost Pt-free counter electrode for DSSC applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. T. Majumder, S. Dhar, P. Chakraborty, K. Debnath, S.P. Mondal, Advantages of ZnO nanotaper photoanodes in photoelectrochemical cells and graphene quantum dot sensitized solar cell applications. J. Electro. Anal. Chem. 813, 92–101 (2018)

    Article  CAS  Google Scholar 

  2. G.K. Upadhyay, J.K. Rajput, T.K. Pathak, V. Kumar, L.P. Purohit, Synthesis of ZnO: TiO2 nanocomposites for photocatalyst application in visible light. Vacuum 160, 154–163 (2019)

    Article  CAS  Google Scholar 

  3. M. Prada, I.F. Prada, M. Cristea, D.E. Popescu, C. Bungău, L. Aleya, C.C. Bungău, New solutions to reduce greenhouse gas emissions through energy efficiency of buildings of special importance–hospitals. Sci. Total Environ. 718, 137446 (2020)

    Article  CAS  Google Scholar 

  4. J. Tian, Y. Sang, G. Yu, H. Jiang, X. Mu, H. Liu, A Bi2WO6-based hybrid photo catalyst with broad spectrum photocatalytic properties under UV, visible, and near‐infrared irradiation. Adv. Mater. 25(36), 5075–5080 (2013)

    Article  CAS  Google Scholar 

  5. H.R. Azimi, M. Ghoranneviss, S.M. Elahi, R. Yousefi, Enhancing photovoltaic performance of PbS/rGO nanocomposites: the role of buffer layer of ZnS/rGO nanocomposites. Ceram. Int. 43(1), 128–132 (2017)

    Article  CAS  Google Scholar 

  6. B.C. O’Regan, J.R. Durrant, Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real. Acc. Chem. Res. 42(11), 1799–1808 (2009)

    Article  Google Scholar 

  7. D. Li, D. Qin, M. Deng, Y. Luo, Q. Meng, Optimization the solid-state electrolytes for dye-sensitized solar cells. Energy Environ. Sci. 2(3), 283–291 (2009)

    Article  CAS  Google Scholar 

  8. M.K. Nazeeruddin, P. Pechy, T. Renouard, S.M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska et al., Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc. 123(8), 1613–1624 (2001)

    Article  CAS  Google Scholar 

  9. V.H.V. Quy, E. Vijayakumar, P. Ho, J.H. Park, J.A. Rajesh, J. Kwon, J. Chae, J.H. Kim, S.H. Kang, K.S. Ahn, Electrodeposited MoS2 as electro catalytic counter electrode for quantum dot-and dye-sensitized solar cells. Electrochim. Acta 260, 716–725 (2018)

    Article  CAS  Google Scholar 

  10. P. Diao, D. Zhang, J. Wang, Q. Zhang, Electrocatalytic activity of supported gold nanoparticles toward CO oxidation: the perimeter effect of gold–support interface. Electrochem. Commun. 12(11), 1622–1625 (2010)

    Article  CAS  Google Scholar 

  11. F. Gong, H. Wang, X. Xu, G. Zhou, Z.S. Wang, In situ growth of Co0.85Se and Ni0.85Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells. J. Am. Chem. Soc. 134(26), 10953–10958 (2012)

    Article  CAS  Google Scholar 

  12. S. Yun, A. Hagfeldt, T. Ma, Pt-free counter electrode for dye‐sensitized solar cells with high efficiency. Adv. Mater. 26(36), 6210–6237 (2014)

    Article  CAS  Google Scholar 

  13. V.D. Dao, D.V. Quang, N.H. Vu, H.H.T. Vu, N.D. Hoa, V.T. Duoc, N. Van Hieu, T.H. Nguyen, N.A. Tran, Transition metal oxides as Pt-free counter electrodes for liquid‐ junction photovoltaic device. Vietnam J. Chem. 57(6), 784–791 (2019)

    Article  CAS  Google Scholar 

  14. V. Arunprasad, P. Siva Karthik, S. Thulasi, G.P. Arul, M. Shkir, A.T. Rajamanickam, T. Sumathi, S.R. Fredrick, Hydrothermal preparation of Ni3S4/CoS2 composite electrocatalytic materials for high performance counter electrodes of dye-sensitized solar cells. J. Cluster Sci. 33(6), 2651–2659 (2022)

    Article  CAS  Google Scholar 

  15. K.K. Saravanan, P. SivaKarthik, Ru-dye grafted CuS and reduced graphene oxide (CuS/rGO) composite: an efficient and photo tunable electrode for dye sensitized solar cells. J. Cluster Sci. 31(2), 401–407 (2020)

    Article  CAS  Google Scholar 

  16. W.L. Li, S.Q. Lie, Y.Q. Du, X.Y. Wan, T.T. Wang, J. Wang, C.Z. Huang, Hydrophilic cu2–xSe/reduced graphene oxide nanocomposites with tunable plasmonic properties and their applications in cellular dark-field microscopic imaging. J. Mater. Chem. B 2(40), 7027–7033 (2014)

    Article  CAS  Google Scholar 

  17. Y. Xiao, D. Su, X. Wang, L. Zhou, S. Wu, F. Li, S. Fang, In suit growth of ultradispersed NiCo2S4 nanoparticles on graphene for asymmetric supercapacitors. Electrochim. Acta 176(, 44–50 (2015)

    Article  CAS  Google Scholar 

  18. H. Jia, Z. Wang, X. Zheng, J. Lin, H. Liang, Y. Cai, W. Fei, Interlaced Ni–Co LDH nanosheets wrapped Co9S8 nanotube with hierarchical structure toward high performance supercapacitors. Chem. Eng. J. 351, 348–355 (2018)

    Article  CAS  Google Scholar 

  19. Z. Wan, C. Jia, Y. Wang, In situ growth of hierarchical NiS2 hollow microspheres as efficient counter electrode for dye-sensitized solar cell. Nanoscale 7(29), 12737–12742 (2015)

    Article  CAS  Google Scholar 

  20. J.C. Tsai, M.H. Hon, I.C. Leu, Fabrication of mesoporous CoS2 nanotube arrays as the counter electrodes of dye sensitized solar cells. Chemistry 10(9), 32–39 (2015)

    Google Scholar 

  21. V. Subbiah, G. Landi, J.J. Wu, S. Anandan, MoS2 coated CoS2 nanocomposites as counter electrodes in Pt-free dye-sensitized solar cells. Phys. Chem. Chem. Phys. 21(45), 25474–25483 (2019)

    Article  CAS  Google Scholar 

  22. L. Shen, L. Yu, H.B. Wu, X.Y. Yu, X. Zhang, X.W.D. Lou, Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat. Commun. 6(1), 1–8 (2015)

    Article  Google Scholar 

  23. W. Hu, R. Chen, W. Xie, L. Zou, N. Qin, D. Bao, CoNi2S4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications. ACS Appl. Mater. Interfaces 6(21), 19318–19326 (2014)

    Article  CAS  Google Scholar 

  24. Q. Hu, W. Ma, G. Liang, H. Nan, X. Zheng, X. Zhang, Anion-exchange reaction synthesized CoNi2S4 nanowires for superior electrochemical performances. RSC Adv. 5(103), 84974–84979 (2015)

    Article  CAS  Google Scholar 

  25. C. Wei, N. Zhan, J. Tao, S. Pang, L. Zhang, C. Cheng, D. Zhang, Synthesis of hierarchically porous NiCo2S4 core-shell hollow spheres via self-template route for high performance supercapacitors. Appl. Surf. Sci. 453, 288–296 (2018)

    Article  CAS  Google Scholar 

  26. X. Liang, K. Nie, X. Ding, L. Dang, J. Sun, F. Shi, H. Xu, R. Jiang, X. He, Z. Liu, Z. Lei, Highly compressible carbon sponge supercapacitor electrode with enhanced performance by growing nickel–cobalt sulfide nanosheets. ACS Appl. Mater. Interfaces 10(12), 10087–10095 (2018)

    Article  CAS  Google Scholar 

  27. C.X. Guo, H.B. Yang, Z.M. Sheng, Z.S. Lu, Q.L. Song, C.M. Li, Layered graphene/quantum dots for photovoltaic devices. Angew. Chem. Int. Ed. 49(17), 3014–3017 (2010)

    Article  CAS  Google Scholar 

  28. K. Subalakshmi, J. Senthilselvan, Effect of fluorine-doped TiO2 photoanode on electron transport, recombination dynamics and improved DSSC efficiency. Sol. Energy 171, 914–928 (2018)

    Article  CAS  Google Scholar 

  29. S.A. Abrol, C. Bhargava, P.K. Sharma, Fabrication of DSSC using doctor blades method incorporating polymer electrolytes. Mater. Res. Express 8(4), 045010 (2021)

    Article  CAS  Google Scholar 

  30. Y. Han, S. Sun, W. Cui, J. Deng, Multidimensional structure of CoNi2S4 materials: structural regulation promoted electrochemical performance in a supercapacitor. RSC Adv. 10(13), 7541–7550 (2020)

    Article  CAS  Google Scholar 

  31. M. Durairasan, P.S. Karthik, J. Balaji, B. Rajeshkanna, Design and fabrication of WSe2/CNTs hybrid network: a highly efficient and stable electrodes for dye sensitized solar cells (DSSCs). Diam. Relat. Mater. 111, 108174 (2021)

    Article  CAS  Google Scholar 

  32. M. Durairasan, K.K. Saravanan, S. Karthik, Enhanced performance of dye-sensitized solar cell-based g-C3N4/Ag3PO4 hybrid composites as novel electrodes fabricated by facial hydrothermal approach. J. Mater. Sci.: Mater. Electron 32(5), 5404–5414 (2021)

    CAS  Google Scholar 

  33. P. Matheswaran, P. Thangavelu, B. Palanivel, Carbon dot sensitized integrative g-C3N4/AgCl hybrids: an synergetic interaction for enhanced visible light driven photo catalytic process. Adv. Powder Technol. 30(8), 1715–1723 (2019)

    Article  CAS  Google Scholar 

  34. S. Selvaraj, M.K. Mohan, M. Navaneethan, S. Ponnusamy, C. Muthamizhchelvan, Synthesis and photo catalytic activity of Gd doped ZnO nanoparticles for enhanced degradation of methylene blue under visible light. Mater. Sci. Semiconduct. Process. 103, 104622 (2019)

    Article  CAS  Google Scholar 

  35. M. Shkir, Z.R. Khan, M. Anis, S.S. Shaikh, S. AlFaify, A comprehensive study of opto-electrical and nonlinear properties of Cu@CdS thin films for optoelectronics. Chin. J. Phys. 63, 51–62 (2020)

    Article  CAS  Google Scholar 

  36. Z. Gao, C. Chen, J. Chang, L. Chen, P. Wang, D. Wu, K. Jiang, Porous Co3S4@Ni3S4 heterostructure arrays electrode with vertical electrons and ions channels for efficient hybrid supercapacitor. Chem. Eng. J. 343, 572–582 (2018)

    Article  CAS  Google Scholar 

  37. D. Ramki, D. Kumar, M. Siva Karthik, CuNi2S4-reduced graphene oxide composites as an efficient counter electrode for high performance dye-sensitized solar cells. J. Mater. Sci. 33(24), 19642–19655 (2022)

    CAS  Google Scholar 

  38. S. Thulasi, V. Arunprasad, P.S. Karthik, G. Elatharasan, P. Senthil, A.T. Rajamanickam, Design and fabrication of high performance photoanode of Fe2(MoO4)3/RGO hybrid composites for triiodide reduction in dye-sensitized solar cells. J. Cluster Sci. 34, 1–9 (2022)

    Google Scholar 

  39. S.K. Swami, N. Chaturvedi, A. Kumar, N. Chander, V. Dutta, D.K. Kumar, A. Ivaturi, S. Senthilarasu, H.M. Upadhyaya, Spray deposited copper zinc tin sulphide (cu2ZnSnS4) film as a counter electrode in dye sensitized solar cell. Phys. Chem. Chem. Phys. 16(43), 23993–23999 (2014)

    Article  CAS  Google Scholar 

  40. S. Sigdel, A. Dubey, H. Elbohy, A. Aboagye, D. Galipeau, L. Zhang, H. Fong, Q. Qiao, Dye-sensitized solar cells based on spray-coated carbon nanofiber/TiO2 nanoparticle composite counter electrodes. J. Mater. Chem. A 2(29), 11448–11453 (2014)

    Article  CAS  Google Scholar 

  41. V. Murugadoss, P. Panneerselvam, C. Yan, Z. Guo, S. Angaiah, A simple one-step hydrothermal synthesis of cobaltnickel selenide/graphene nanohybrid as an advanced platinum free counter electrode for dye sensitized solar cell. Electrochim. Acta 312, 157–167 (2019)

    Article  CAS  Google Scholar 

  42. V. Subbiah, G. Landi, J.J. Wu, S. Anandan, M. Ashokkumar, Platinum-free dye-sensitized solar cells by flower-like mixed-phase CoxSy/NixSy/MoxSy composites. New J. Chem. 45(4), 1967–1976 (2021)

    Article  CAS  Google Scholar 

  43. R. Krishnapriya, S. Praneetha, A.M. Rabel, A.V. Murugan, Energy efficient, one-step microwave-solvothermal synthesis of a highly electro-catalytic thiospinel NiCo2S4/graphene nanohybrid as a novel sustainable counter electrode material for Pt-free dye-sensitized solar cells. J. Mater. Chem. C 5(12), 3146–3155 (2017)

    Article  CAS  Google Scholar 

  44. A. Sarkar, S. Bera, A.K. Chakraborty, CoNi2S4-reduced graphene oxide nanohybrid: an excellent counter electrode for Pt-free DSSC. Sol. Energy 208(, 139–149 (2020)

    Article  CAS  Google Scholar 

  45. Z. Shi, K. Deng, L. Li, Pt-free and efficient counter electrode with nanostructured CoNi2S4 for dye-sensitized solar cells. Sci. Rep. 5(1), 1–6 (2015)

    Google Scholar 

  46. L. Chen, Y. Zhou, H. Dai, T. Yu, J. Liu, Z. Zou, One-step growth of CoNi2S4 nanoribbons on carbon fibers as platinum-free counter electrodes for fiber-shaped dye-sensitized solar cells with high performance: polymorph-dependent conversion efficiency. Nano Energy 11, 697–703 (2015)

    Article  CAS  Google Scholar 

  47. C. Zhang, L. Deng, P. Zhang, X. Ren, Y. Li, T. He, Mesoporous NiCo2O4 networks with enhanced performance as counter electrodes for dye-sensitized solar cells. Dalton Trans. 46(13), 4403–4411 (2017)

    Article  CAS  Google Scholar 

  48. J. Huo, J. Wu, M. Zheng, Y. Tu, Z. Lan, Flower-like nickel cobalt sulfide microspheres modified with nickel sulfide as Pt-free counter electrode for dye-sensitized solar cells. J. Power Sources 304, 266–272 (2016)

    Article  CAS  Google Scholar 

  49. S.Y. Khoo, J. Miao, H.B. Yang, Z. He, K.C. Leong, B. Liu, T.T.Y. Tan, One-step hydrothermal tailoring of NiCo2S4 nanostructures on conducting Oxide Substrates as an efficient counter electrode in Dye-Sensitized Solar cells. Adv. Mater. Interfaces 2(18), 1500384 (2015)

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

PR study conceptualization and writing (original draft) the manuscript. CM data curation, formal analysis and writing (review and editing), RU Editing and funding acquisition, Review the draft. 

Corresponding author

Correspondence to P. Rathnavel.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathnavel, P., Murukesh, C. & Umamaheswari, R. Fabrication of a novel rGO encapsulated nickel cobalt chalcogenide electrocatalyst as an efficient counter electrode to boost efficiency of dye-sensitized solar cells. J Mater Sci: Mater Electron 34, 1000 (2023). https://doi.org/10.1007/s10854-023-10402-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10402-0

Navigation