Abstract
The NBR/G@Fe3O4 composites with good electromagnetic shielding properties are prepared by solution blending, previously, the “G@Fe3O4 composite particles” were obtained by a simple co-precipitation method. The structures of G@Fe3O4 are characterized by Fourier infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy (Raman), Scanning electron microscopy (SEM), and the graphene content in the composite particles was analyzed by thermogravimetric analysis (TGA). The electromagnetic shielding performance of NBR composites is tested by microwave vector network analyzer. The results show that the average electromagnetic shielding effectiveness of NBR/G@Fe3O4 composites in X-band (8.2–12.4 GHz) can reach 80.4dB, and when the thickness is only 2.1 mm and the filler content is 15 phr can reach 28.2dB, which shield 96.2% of the energy of incident electromagnetic waves. Due to the introduction of magnetic particle Fe3O4, the NBR/G@Fe3O4 composites have better shielding performance than NBR/G composites at the same graphene content. The electromagnetic shielding effectiveness of NBR/G@Fe3O4 composites with 9.3 phr of graphene is basically the same as that of NBR/G composites with 12.4 phr of graphene.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
Research data are not shared.
References
H. Deng, L. Lin, M. Ji, S. Zhang, M. Yang, Q. Fu, Prog. Polym. Sci. 39, 627 (2014). https://doi.org/10.1016/j.progpolymsci.2013.07.007
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong, C.M. Koo, Y. Gogotsi, Science 353, 1137 (2016). https://doi.org/10.1126/science.aag2421
H. Abbasi, M. Antunes, J.I. Velasco, Prog. Mater. Sci. 103, 319 (2019). https://doi.org/10.1016/j.pmatsci.2019.02.003
X. Fan, G. Zhang, J. Li, Z. Shang, H. Zhang, Q. Gao, J. Qin, X. Shi, Comp-os. Pt. A-Appl. Sci. Manuf. 121, 64 (2019). https://doi.org/10.1016/j.compositesa.2019.03.008
J.-M. Thomassin, C. Jérôme, T. Pardoen, C. Bailly, I. Huynen, C. Detrembleur, Mater. Sci. Eng. R-Rep. 74, 211 (2013). https://doi.org/10.1016/j.mser.2013.06.001
S.S. Grabchikov, A.V. Trukhanov, S.V. Trukhanov, I.S. Kazakevich, A.A. Solobay, V.T. Erofeenko, N.A. Vasilenkov, O.S. Volkova, A. Shakin, J. Magn. Magn. Mater. 398, 49 (2016). https://doi.org/10.1016/j.jmmm.2015.08.122
A.V. Trukhanov, S.S. Grabchikov, A.A. Solobai, D.I. Tishkevich, S.V. Trukhanov, E.L. Trukhanova, J. Magn. Magn. Mater. 443, 142 (2017). https://doi.org/10.1016/j.jmmm.2017.07.053
L.C. Jia, D.X. Yan, Y. Yang, D. Zhou, C.H. Cui, E. Bianco, J. Lou, R. Vajtai, B. Li, P.M. Ajayan, Adv. Mater. Technol. 2, 1700078 (2017). https://doi.org/10.1002/admt.201700078
A. Gupta, V. Choudhary, Compos. Sci. Technol. 71, 1563 (2011). https://doi.org/10.1016/j.compscitech.2011.06.014
J. Yang, X. Liao, G. Wang, J. Chen, W. Tang, T. Wang, G. Li, J. Mater. Chem. C 8, 147 (2020). https://doi.org/10.1039/c9tc05152j
Z. Chen, C. Xu, C. Ma, W. Ren, H. Cheng, Adv. Mater. 25, 1296 (2013). https://doi.org/10.1002/adma.201204196
M. Mahmoodi, M. Arjmand, U. Sundararaj, S. Park, Carbon 50, 1455 (2012). https://doi.org/10.1016/j.carbon.2011.11.004
M.A. Almessiere, A.V. Trukhanov, Y. Slimani, K.Y. You, S.V. Trukhanov, E.L. Trukhanova, F. Esa, A. Sadaqat, K. Chaudhary, M. Zdorovets, A. Baykal, Nanomaterials 9, 202 (2019). https://doi.org/10.3390/nano9020202
A.L. Kozlovskiy, M.V. Zdorovets, Mater. Chem. Phys. 263, 124444 (2021). https://doi.org/10.1016/j.matchemphys.2021.124444
J. Wu, W. Pisula, K. Müllen, Chem. Rev. 107, 718 (2007). https://doi.org/10.1021/cr068010r
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004). https://doi.org/10.1126/science.1102896
A.A. Al-Ghamdi, A.A. Al-Ghamdi, Y. Al-Turki, F. Yakuphanoglu, F. El-Tantawy, Compos. Pt B-Eng. 88, 212 (2016). https://doi.org/10.1016/j.compositesb.2015.11.010
J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, Y. Chen, Carbon 47, 922 (2009). https://doi.org/10.1016/j.carbon.2008.12.038
K. Tian, H. Wang, Z. Su, J. He, X. Tian, W. Huang, Y. Guo, Mater. Res. Exp. 4, 045603 (2017). https://doi.org/10.1088/2053-1591/aa6a35
H.-B. Zhang, Q. Yan, W.-G. Zheng, Z. He, Z.-Z. Yu, ACS Appl. Mater. Interfaces 3, 918 (2011). https://doi.org/10.1021/am200021v
Y. Chen, H.-B. Zhang, Y. Huang, Y. Jiang, W.-G. Zheng, Z.-Z. Yu, Compos. Sci. Technol. 118, 178 (2015). https://doi.org/10.1016/j.compscitech.2015.08.023
T.K. Gupta, B.P. Singh, V.N. Singh, S. Teotia, A.P. Singh, I. Elizabeth, S.R. Dhakate, S. Dhawan, R. Mathur, J. Mater. Chem. A 2, 4256 (2014). https://doi.org/10.1039/c3ta14854h
T. Long, L. Hu, H. Dai, Y. Tang, Appl. Phys. A-Mater. Sci. Process 116, 25 (2014)
D.A. Vinnik, V.E. Zhivulin, D.P. Sherstyuk, AYu. Starikov, P.A. Zezyulina, S.A. Gudkova, D.A. Zherebtsov, K.N. Rozanov, S.V. Trukhanov, K.A. Astapovich, V.A. Turchenko, A.S.B. Sombra, D. Zhou, R.B. Jotania, C. Singh, A.V. Trukhanov, Mater. Today Chem. 20, 100460 (2021). https://doi.org/10.1016/j.mtchem.2021.100460
D.A. Vinnik, V.E. Zhivulin, D.P. Sherstyuk, A.Yu. Starikov, P.A. Zezyulina, S.A. Gudkova, D.A. Zherebtsov, K.N. Rozanov, S.V. Trukhanov, K.A. Astapovich, A.S.B. Sombra, D. Zhou, R.B. Jotania, C. Singh, A.V. Trukhanov, J. Mater. Chem. C 9, 5425 (2021). https://doi.org/10.1039/D0TC05692H
A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, P. Thakur, A. Thakur, Y. Yang, D.A. Vinnik, E.S. Yakovenko, LYu. Matzui, E.L. Trukhanova, S.V. Trukhanov, J. Alloys Compd. 754, 247 (2018). https://doi.org/10.1016/j.jallcom.2018.04.150
M.V. Zdorovets, A.L. Kozlovskiy, D.I. Shlimas, D.B. Borgekov, J. Mater. Sci.: Mater. Electron. 32, 16694 (2021). https://doi.org/10.1007/s10854-021-06226-5
K. Dukenbayev, I.V. Korolkov, D.I. Tishkevich, A.L. Kozlovskiy, S.V. Trukhanov, Y.G. Gorin, E.E. Shumskaya, E.Y. Kaniukov, D.A. Vinnik, M.V. Zdorovets, M. Aniso-vich, A.V. Trukhanov, D. Tosi, C. Molardi, Nanomaterials 9, 494 (2019). https://doi.org/10.3390/nano9040494
M.A. Almessiere, A.V. Trukhanov, F.A. Khan, Y. Slimani, N. Tashkandi, V.A. Turchenko, T.I. Zubar, D.I. Tishkevich, S.V. Trukhanov, L.V. Panina, A. Baykal, Ceram. Int. 46, 7346 (2020). https://doi.org/10.1016/j.ceramint.2019.11.230
Y. Zhan, J. Wang, K. Zhang, Y. Li, Y. Meng, N. Yan, W. Wei, F. Peng, H. Xia, Chem. Eng. J. 344, 184 (2018). https://doi.org/10.1016/j.cej.2018.03.085
B. Shen, W. Zhai, M. Tao, J. Ling, W. Zheng, ACS Appl. Mater. Interfaces 5, 11383 (2013). https://doi.org/10.1021/am4036527
K.K. Kadyrzhanov, D.I. Shlimas, A.L. Kozlovskiy, M.V. Zdorovets, J. Mater. Sci. : Mater. Electron. 31, 11729 (2020). https://doi.org/10.1007/s10854-020-03724-w
R.E. El-Shater, HEl. Shimy, S.A. Saafan, M.A. Darwish, D. Zhou, A.V. Trukhanov, S.V. Trukhanov, F. Fakhry, J. Alloys Compd. 928, 166954 (2022). https://doi.org/10.1016/j.jallcom.2022.166954
A. Nihmath, M.T. Ramesan, Prog. Rubber Plast. Recycl. Technol. 37, 131 (2020). https://doi.org/10.1177/1477760620925490
Z. Zhang, X. He, J. Zhang, X. Lu, C. Yang, T. Liu, X. Wang, R. Zhang, RSC Adv. 6, 91798 (2016). https://doi.org/10.1039/c6ra16767e
Y. Wang, Y. Huang, Y. Song, X. Zhang, Y. Ma, J. Liang, Y. Chen, Nano Lett. 9, 220 (2009). https://doi.org/10.1021/nl802810g
B. Li, L. Zhou, D. Wu, H. Peng, K. Yan, Y. Zhou, Z. Liu, ACS Nano 5, 5957 (2011). https://doi.org/10.1021/nn201731t
Y. Song, Y. Gao, H. Rong, H. Wen, Y. Sha, H. Zhang, H.-J. Liu, Q. Liu, Sustain. Energy Fuels 2, 803 (2018). https://doi.org/10.1039/c7se00543a
R. Liao, Z. Tang, Y. Lei, B. Guo, J. Phys. Chem. C 115, 20740 (2011). https://doi.org/10.1021/jp2068683
S.V. Trukhanov, J. Exp, Theor. Phys. 101, 513 (2005). https://doi.org/10.1134/1.2103220
A.L. Kozlovskiy, A. Alina, M.V. Zdorovets, J. Mater. Sci. : Mater. Electron. 32, 3863 (2021). https://doi.org/10.1007/s10854-020-05130-8
S.V. Trukhanov, J. Mater. Chem. 13, 347 (2003). https://doi.org/10.1039/b208664f
A. Kozlovskiy, K. Egizbek, M.V. Zdorovets, M. Ibragimova, A. Shumskaya, A.A. Rogachev, Z.V. Ignatovich, K. Kadyrzhanov, Sensors 20, 4851 (2020). https://doi.org/10.3390/s20174851
D. Zhou, T.-L. Zhang, B.-H. Han, Microporous Mesoporous Mater. 165, 234 (2013). https://doi.org/10.1016/j.micromeso.2012.08.011
P.K.S. Mural, S.P. Pawar, S. Jayanthi, G. Madras, A.K. Sood, S. Bose, ACS Appl. Mater. Interfaces 7, 16266 (2015). https://doi.org/10.1021/acsami.5b02703
S. Xiao, H. Mei, D. Han, K.G. Dassios, L. Cheng, Carbon 122, 718 (2017). https://doi.org/10.1016/j.carbon.2017.07.023
H. Mei, D. Han, S. Xiao, T. Ji, J. Tang, L. Cheng, Carbon 109, 149 (2016). https://doi.org/10.1016/j.carbon.2016.07.070
D.-X. Yan, P.-G. Ren, H. Pang, Q. Fu, M.-B. Yang, Z.-M. Li, J. Mater. Chem. 22, 18772 (2012). https://doi.org/10.1039/c2jm32692b
Funding
The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.
Author information
Authors and Affiliations
Contributions
All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by: SG, QH and XH. The first draft of the manuscript was written by: SG and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors have no relevant financial or non-financial interests to disclose.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Gao, S., He, Q., Yang, Q. et al. Research of NBR/G@Fe3O4 electromagnetic shielding composites. J Mater Sci: Mater Electron 34, 985 (2023). https://doi.org/10.1007/s10854-023-10401-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10854-023-10401-1