Skip to main content
Log in

Research of NBR/G@Fe3O4 electromagnetic shielding composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The NBR/G@Fe3O4 composites with good electromagnetic shielding properties are prepared by solution blending, previously, the “G@Fe3O4 composite particles” were obtained by a simple co-precipitation method. The structures of G@Fe3O4 are characterized by Fourier infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy (Raman), Scanning electron microscopy (SEM), and the graphene content in the composite particles was analyzed by thermogravimetric analysis (TGA). The electromagnetic shielding performance of NBR composites is tested by microwave vector network analyzer. The results show that the average electromagnetic shielding effectiveness of NBR/G@Fe3O4 composites in X-band (8.2–12.4 GHz) can reach 80.4dB, and when the thickness is only 2.1 mm and the filler content is 15 phr can reach 28.2dB, which shield 96.2% of the energy of incident electromagnetic waves. Due to the introduction of magnetic particle Fe3O4, the NBR/G@Fe3O4 composites have better shielding performance than NBR/G composites at the same graphene content. The electromagnetic shielding effectiveness of NBR/G@Fe3O4 composites with 9.3 phr of graphene is basically the same as that of NBR/G composites with 12.4 phr of graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Research data are not shared.

References

  1. H. Deng, L. Lin, M. Ji, S. Zhang, M. Yang, Q. Fu, Prog. Polym. Sci. 39, 627 (2014). https://doi.org/10.1016/j.progpolymsci.2013.07.007

    Article  CAS  Google Scholar 

  2. F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong, C.M. Koo, Y. Gogotsi, Science 353, 1137 (2016). https://doi.org/10.1126/science.aag2421

    Article  CAS  Google Scholar 

  3. H. Abbasi, M. Antunes, J.I. Velasco, Prog. Mater. Sci. 103, 319 (2019). https://doi.org/10.1016/j.pmatsci.2019.02.003

    Article  CAS  Google Scholar 

  4. X. Fan, G. Zhang, J. Li, Z. Shang, H. Zhang, Q. Gao, J. Qin, X. Shi, Comp-os. Pt. A-Appl. Sci. Manuf. 121, 64 (2019). https://doi.org/10.1016/j.compositesa.2019.03.008

    Article  CAS  Google Scholar 

  5. J.-M. Thomassin, C. Jérôme, T. Pardoen, C. Bailly, I. Huynen, C. Detrembleur, Mater. Sci. Eng. R-Rep. 74, 211 (2013). https://doi.org/10.1016/j.mser.2013.06.001

    Article  Google Scholar 

  6. S.S. Grabchikov, A.V. Trukhanov, S.V. Trukhanov, I.S. Kazakevich, A.A. Solobay, V.T. Erofeenko, N.A. Vasilenkov, O.S. Volkova, A. Shakin, J. Magn. Magn. Mater. 398, 49 (2016). https://doi.org/10.1016/j.jmmm.2015.08.122

    Article  CAS  Google Scholar 

  7. A.V. Trukhanov, S.S. Grabchikov, A.A. Solobai, D.I. Tishkevich, S.V. Trukhanov, E.L. Trukhanova, J. Magn. Magn. Mater. 443, 142 (2017). https://doi.org/10.1016/j.jmmm.2017.07.053

    Article  CAS  Google Scholar 

  8. L.C. Jia, D.X. Yan, Y. Yang, D. Zhou, C.H. Cui, E. Bianco, J. Lou, R. Vajtai, B. Li, P.M. Ajayan, Adv. Mater. Technol. 2, 1700078 (2017). https://doi.org/10.1002/admt.201700078

    Article  CAS  Google Scholar 

  9. A. Gupta, V. Choudhary, Compos. Sci. Technol. 71, 1563 (2011). https://doi.org/10.1016/j.compscitech.2011.06.014

    Article  CAS  Google Scholar 

  10. J. Yang, X. Liao, G. Wang, J. Chen, W. Tang, T. Wang, G. Li, J. Mater. Chem. C 8, 147 (2020). https://doi.org/10.1039/c9tc05152j

    Article  CAS  Google Scholar 

  11. Z. Chen, C. Xu, C. Ma, W. Ren, H. Cheng, Adv. Mater. 25, 1296 (2013). https://doi.org/10.1002/adma.201204196

    Article  CAS  Google Scholar 

  12. M. Mahmoodi, M. Arjmand, U. Sundararaj, S. Park, Carbon 50, 1455 (2012). https://doi.org/10.1016/j.carbon.2011.11.004

    Article  CAS  Google Scholar 

  13. M.A. Almessiere, A.V. Trukhanov, Y. Slimani, K.Y. You, S.V. Trukhanov, E.L. Trukhanova, F. Esa, A. Sadaqat, K. Chaudhary, M. Zdorovets, A. Baykal, Nanomaterials 9, 202 (2019). https://doi.org/10.3390/nano9020202

    Article  CAS  Google Scholar 

  14. A.L. Kozlovskiy, M.V. Zdorovets, Mater. Chem. Phys. 263, 124444 (2021). https://doi.org/10.1016/j.matchemphys.2021.124444

    Article  CAS  Google Scholar 

  15. J. Wu, W. Pisula, K. Müllen, Chem. Rev. 107, 718 (2007). https://doi.org/10.1021/cr068010r

    Article  CAS  Google Scholar 

  16. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004). https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  17. A.A. Al-Ghamdi, A.A. Al-Ghamdi, Y. Al-Turki, F. Yakuphanoglu, F. El-Tantawy, Compos. Pt B-Eng. 88, 212 (2016). https://doi.org/10.1016/j.compositesb.2015.11.010

    Article  CAS  Google Scholar 

  18. J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, Y. Chen, Carbon 47, 922 (2009). https://doi.org/10.1016/j.carbon.2008.12.038

    Article  CAS  Google Scholar 

  19. K. Tian, H. Wang, Z. Su, J. He, X. Tian, W. Huang, Y. Guo, Mater. Res. Exp. 4, 045603 (2017). https://doi.org/10.1088/2053-1591/aa6a35

    Article  CAS  Google Scholar 

  20. H.-B. Zhang, Q. Yan, W.-G. Zheng, Z. He, Z.-Z. Yu, ACS Appl. Mater. Interfaces 3, 918 (2011). https://doi.org/10.1021/am200021v

    Article  CAS  Google Scholar 

  21. Y. Chen, H.-B. Zhang, Y. Huang, Y. Jiang, W.-G. Zheng, Z.-Z. Yu, Compos. Sci. Technol. 118, 178 (2015). https://doi.org/10.1016/j.compscitech.2015.08.023

    Article  CAS  Google Scholar 

  22. T.K. Gupta, B.P. Singh, V.N. Singh, S. Teotia, A.P. Singh, I. Elizabeth, S.R. Dhakate, S. Dhawan, R. Mathur, J. Mater. Chem. A 2, 4256 (2014). https://doi.org/10.1039/c3ta14854h

    Article  CAS  Google Scholar 

  23. T. Long, L. Hu, H. Dai, Y. Tang, Appl. Phys. A-Mater. Sci. Process 116, 25 (2014)

    Article  CAS  Google Scholar 

  24. D.A. Vinnik, V.E. Zhivulin, D.P. Sherstyuk, AYu. Starikov, P.A. Zezyulina, S.A. Gudkova, D.A. Zherebtsov, K.N. Rozanov, S.V. Trukhanov, K.A. Astapovich, V.A. Turchenko, A.S.B. Sombra, D. Zhou, R.B. Jotania, C. Singh, A.V. Trukhanov, Mater. Today Chem. 20, 100460 (2021). https://doi.org/10.1016/j.mtchem.2021.100460

    Article  CAS  Google Scholar 

  25. D.A. Vinnik, V.E. Zhivulin, D.P. Sherstyuk, A.Yu. Starikov, P.A. Zezyulina, S.A. Gudkova, D.A. Zherebtsov, K.N. Rozanov, S.V. Trukhanov, K.A. Astapovich, A.S.B. Sombra, D. Zhou, R.B. Jotania, C. Singh, A.V. Trukhanov, J. Mater. Chem. C 9, 5425 (2021). https://doi.org/10.1039/D0TC05692H

    Article  CAS  Google Scholar 

  26. A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, P. Thakur, A. Thakur, Y. Yang, D.A. Vinnik, E.S. Yakovenko, LYu. Matzui, E.L. Trukhanova, S.V. Trukhanov, J. Alloys Compd. 754, 247 (2018). https://doi.org/10.1016/j.jallcom.2018.04.150

    Article  CAS  Google Scholar 

  27. M.V. Zdorovets, A.L. Kozlovskiy, D.I. Shlimas, D.B. Borgekov, J. Mater. Sci.: Mater. Electron. 32, 16694 (2021). https://doi.org/10.1007/s10854-021-06226-5

    Article  CAS  Google Scholar 

  28. K. Dukenbayev, I.V. Korolkov, D.I. Tishkevich, A.L. Kozlovskiy, S.V. Trukhanov, Y.G. Gorin, E.E. Shumskaya, E.Y. Kaniukov, D.A. Vinnik, M.V. Zdorovets, M. Aniso-vich, A.V. Trukhanov, D. Tosi, C. Molardi, Nanomaterials 9, 494 (2019). https://doi.org/10.3390/nano9040494

    Article  CAS  Google Scholar 

  29. M.A. Almessiere, A.V. Trukhanov, F.A. Khan, Y. Slimani, N. Tashkandi, V.A. Turchenko, T.I. Zubar, D.I. Tishkevich, S.V. Trukhanov, L.V. Panina, A. Baykal, Ceram. Int. 46, 7346 (2020). https://doi.org/10.1016/j.ceramint.2019.11.230

    Article  CAS  Google Scholar 

  30. Y. Zhan, J. Wang, K. Zhang, Y. Li, Y. Meng, N. Yan, W. Wei, F. Peng, H. Xia, Chem. Eng. J. 344, 184 (2018). https://doi.org/10.1016/j.cej.2018.03.085

    Article  CAS  Google Scholar 

  31. B. Shen, W. Zhai, M. Tao, J. Ling, W. Zheng, ACS Appl. Mater. Interfaces 5, 11383 (2013). https://doi.org/10.1021/am4036527

    Article  CAS  Google Scholar 

  32. K.K. Kadyrzhanov, D.I. Shlimas, A.L. Kozlovskiy, M.V. Zdorovets, J. Mater. Sci. : Mater. Electron. 31, 11729 (2020). https://doi.org/10.1007/s10854-020-03724-w

    Article  CAS  Google Scholar 

  33. R.E. El-Shater, HEl. Shimy, S.A. Saafan, M.A. Darwish, D. Zhou, A.V. Trukhanov, S.V. Trukhanov, F. Fakhry, J. Alloys Compd. 928, 166954 (2022). https://doi.org/10.1016/j.jallcom.2022.166954

    Article  CAS  Google Scholar 

  34. A. Nihmath, M.T. Ramesan, Prog. Rubber Plast. Recycl. Technol. 37, 131 (2020). https://doi.org/10.1177/1477760620925490

    Article  Google Scholar 

  35. Z. Zhang, X. He, J. Zhang, X. Lu, C. Yang, T. Liu, X. Wang, R. Zhang, RSC Adv. 6, 91798 (2016). https://doi.org/10.1039/c6ra16767e

    Article  CAS  Google Scholar 

  36. Y. Wang, Y. Huang, Y. Song, X. Zhang, Y. Ma, J. Liang, Y. Chen, Nano Lett. 9, 220 (2009). https://doi.org/10.1021/nl802810g

    Article  CAS  Google Scholar 

  37. B. Li, L. Zhou, D. Wu, H. Peng, K. Yan, Y. Zhou, Z. Liu, ACS Nano 5, 5957 (2011). https://doi.org/10.1021/nn201731t

    Article  CAS  Google Scholar 

  38. Y. Song, Y. Gao, H. Rong, H. Wen, Y. Sha, H. Zhang, H.-J. Liu, Q. Liu, Sustain. Energy Fuels 2, 803 (2018). https://doi.org/10.1039/c7se00543a

    Article  CAS  Google Scholar 

  39. R. Liao, Z. Tang, Y. Lei, B. Guo, J. Phys. Chem. C 115, 20740 (2011). https://doi.org/10.1021/jp2068683

    Article  CAS  Google Scholar 

  40. S.V. Trukhanov, J. Exp, Theor. Phys. 101, 513 (2005). https://doi.org/10.1134/1.2103220

    Article  CAS  Google Scholar 

  41. A.L. Kozlovskiy, A. Alina, M.V. Zdorovets, J. Mater. Sci. : Mater. Electron. 32, 3863 (2021). https://doi.org/10.1007/s10854-020-05130-8

    Article  CAS  Google Scholar 

  42. S.V. Trukhanov, J. Mater. Chem. 13, 347 (2003). https://doi.org/10.1039/b208664f

    Article  CAS  Google Scholar 

  43. A. Kozlovskiy, K. Egizbek, M.V. Zdorovets, M. Ibragimova, A. Shumskaya, A.A. Rogachev, Z.V. Ignatovich, K. Kadyrzhanov, Sensors 20, 4851 (2020). https://doi.org/10.3390/s20174851

    Article  CAS  Google Scholar 

  44. D. Zhou, T.-L. Zhang, B.-H. Han, Microporous Mesoporous Mater. 165, 234 (2013). https://doi.org/10.1016/j.micromeso.2012.08.011

    Article  CAS  Google Scholar 

  45. P.K.S. Mural, S.P. Pawar, S. Jayanthi, G. Madras, A.K. Sood, S. Bose, ACS Appl. Mater. Interfaces 7, 16266 (2015). https://doi.org/10.1021/acsami.5b02703

    Article  CAS  Google Scholar 

  46. S. Xiao, H. Mei, D. Han, K.G. Dassios, L. Cheng, Carbon 122, 718 (2017). https://doi.org/10.1016/j.carbon.2017.07.023

    Article  CAS  Google Scholar 

  47. H. Mei, D. Han, S. Xiao, T. Ji, J. Tang, L. Cheng, Carbon 109, 149 (2016). https://doi.org/10.1016/j.carbon.2016.07.070

    Article  CAS  Google Scholar 

  48. D.-X. Yan, P.-G. Ren, H. Pang, Q. Fu, M.-B. Yang, Z.-M. Li, J. Mater. Chem. 22, 18772 (2012). https://doi.org/10.1039/c2jm32692b

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by: SG, QH and XH. The first draft of the manuscript was written by: SG and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xianru He.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S., He, Q., Yang, Q. et al. Research of NBR/G@Fe3O4 electromagnetic shielding composites. J Mater Sci: Mater Electron 34, 985 (2023). https://doi.org/10.1007/s10854-023-10401-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10401-1

Navigation