Skip to main content
Log in

Effect of sintering temperature on the microstructure, magnetic, and microwave absorption properties of M-type barium ferrite nanoparticles prepared by sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Barium ferrite has wide applications in electronic devices, and its preparation process optimization plays an important role in the improvement of microwave electromagnetic and absorption properties. In this paper, M-type barium ferrite was synthesized by the citrate sol–gel method. During sintering, the precursor gel first experienced free water evaporation and impurity volatilization, and then went through two endothermic reactions, eventually generating M-type barium ferrite. As the sintering temperature increased from 800 to 1400 °C, the products transformed from the particles exhibited a long rod shape without an obvious M-type barium ferrite phase to the hexagonal block particles mainly composed of M-type barium ferrite. Meanwhile, with increasing temperature, the particles and grain size became larger, the size uniformity was first strengthened and then weakened, the magnetic properties were first enhanced and then weakened, and the dielectric loss capacity continued to weaken, which were related to the changes of structure and microstructure, e.g., densification, magnetic domain state, and specific surface area. The products were equipped with the main loss mechanisms of dipole turning polarization, space charge polarization, interfacial polarization, natural resonance, eddy current loss, and multiple reflections/scattering. Besides they possessed great impedance performance and obvious interference cancelation, further improving the absorption ability. After optimization, the barium ferrite sintered at 1200 °C exhibited a maximum microwave absorption bandwidth of 6.16 GHz with a matching thickness of 2.34 mm, and it achieved the minimum reflection loss of − 38.97 dB at 39.93 GHz when the matching thickness is 3.10 mm. It is indicated that the nanoparticles sintered at the appropriate temperature are the potential candidates as wide-band electromagnetic wave absorbers in the Ka-band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The data are available from the corresponding author on reasonable request.

References

  1. K.S. Sandeep, K. Yaswanth, J. Penke et al., Facile synthesis of Al substituted Cu-ferrite infused reduced graphene oxide (rGO) nanohybrid for improving microwave absorption at gigahertz frequencies. J. Alloys Compd. 901, 163659 (2022)

    Article  Google Scholar 

  2. B. Zpa, W. Dan, G. Xiang et al., High strength and microwave-absorbing polymer-derived SiCN honeycomb ceramic prepared by 3D printing. J. Eur. Ceram. Soc. 42(4), 1322–1331 (2021)

    Google Scholar 

  3. S. Jan, A. Mashadi, S. Didin et al., Role of neodymium substitution on the structural, magnetic and microwave absorbing properties of nickel ferrites. J. Magn. Magn. Mater. 563, 170023 (2022)

    Article  Google Scholar 

  4. X.Y. Wang, S.C. Wei, Y. Yuan et al., Effect of copper sulfide nanosphere shell on microstructure and microwave absorption properties of cobalt ferritecarbon nanotube composites. J. Alloy. Compd. 909(15), 164676 (2022)

    Article  CAS  Google Scholar 

  5. C. Mahshid, N. Mahmoud, G. Hamidreza, Enhanced microwave absorption performance of graphene/doped Li ferrite nanocomposites. Adv. Powder Technol. 32(12), 4697–4710 (2021)

    Article  Google Scholar 

  6. C.Y. Liu, Y.J. Zhang, Y. Tang et al., The tunable magnetic and microwave absorption properties of the Nb5+–Ni2+ co-doped M-type barium ferrite. J. Mater. Chem. C 5(14), 3461–3472 (2017)

    Article  CAS  Google Scholar 

  7. M. Wang, Q. Xu, W. Shan et al., Formation of BaFe12xNixO19 ceramics with considerably high dielectric and magnetic property coexistence. J. Alloy. Compd. 765, 951–960 (2018)

    Article  CAS  Google Scholar 

  8. D. Lisjak, The low-temperature sintering of M-type hexaferrites. J. Eur. Ceram. Soc. 32(12), 3351–3360 (2012)

    Article  CAS  Google Scholar 

  9. J. Liu, H. Huang, P. Qiu et al., Topotactic fluorination induced stable structure and tunable electronic transport in perovskite barium ferrite thin films. Ceram. Int. 46(7), 8761–8765 (2020)

    Article  Google Scholar 

  10. D.H. Chen, Y.Y. Chen, Synthesis of barium ferrite ultrafine particles by coprecipitation in the presence of polyacrylic acid. J. Colloid Interface Sci. 235(1), 9–14 (2001)

    Article  CAS  Google Scholar 

  11. S. Veisi, M. Yousefi, M. Amini, Magnetic and microwave absorption properties of Cu/Zr doped M-type Ba/Sr hexaferrites prepared via sol-gel auto-combustion method. J. Alloy. Compd. 773, 1187–1194 (2019)

    Article  Google Scholar 

  12. L.S. Ferreira, T.R. Silva, V.D. Silva et al., Proteic sol–gel synthesis, structure and battery-type behavior of Fe-based spinels (MFe2O4, M = Cu Co, Ni). Adv. Powder Technol. 31(2), 604–613 (2020)

    Article  CAS  Google Scholar 

  13. S. Bhaskaran, I.A. Al-Omari, E.V. Gopalan, On the enhanced coercive field and anisotropy observed in cobalt substituted copper ferrite nanoparticles prepared by a modified sol–gel method. J. Alloy. Compd. 884, 161095 (2021)

    Article  CAS  Google Scholar 

  14. K. Zhang, J.H. Luo, N. Yu et al., Synthesis and excellent electromagnetic absorption properties of reduced graphene oxide/PANI/BaNd0.2Sm0.2Fe11.6O19 nanocomposites. J. Alloys Compd. 779, 270–279 (2019)

    Article  CAS  Google Scholar 

  15. W.J. Feng, J.T. Gang, Y. Cao et al., Microwave absorption property of BaFe12O19/PANI Ti-doped nanocomposites. DEStech Trans. Environ. Energy Earth Sci. 11, 26–35 (2017)

    Google Scholar 

  16. F.Y. Li, Preparation of BaFe12O19 ultrafine particles by polyacrylamide gel method. Funct. Mater. 3, 157–159 (1992)

    Google Scholar 

  17. D. Amutha, D.D. Jayaseelanb, F.D. Gnanamb et al., Densification behaviour and microstructure of gel-derived phase-pure mullite in the presence of sinter additives. J. Eur. Ceram. Soc. 21(12), 2253–2257 (2001)

    Article  Google Scholar 

  18. Y.M. Jiang, Influence of the sol composition on formation process of barium hexaferrite. J. Yanzhou Univ. Natural Sci. Ed. 2(1), 26–28 (1999)

    CAS  Google Scholar 

  19. D.M. Roy, R. Roy, An experimental study of the formation and properties of synthetic serpentines and related layer silicate minerals. Am. Miner. 39(11–12), 957–975 (1954)

    CAS  Google Scholar 

  20. M. Wang, Q. Xu, J. Liu et al., Extra up-spin magnetic moments and extraordinary high saturation magnetization of Ni2+ doped barium ferrite in 4f2 site. Mater. Res. Express 6, 086104 (2019)

    Article  CAS  Google Scholar 

  21. N. Vinod, M.L. Dhage, M.K. Mane et al., Influence of substitution on structural and magnetic properties of BaFe12O19 powder prepared by sol-gel auto combustion method. J. Alloy. Compd. 509, 4394–4398 (2011)

    Article  Google Scholar 

  22. Y.Y. Meng, M.H. He, Q. Zeng et al., Synthesis of barium ferrite ultrafine powders by a sol–gel combustion method using glycine gels. J. Alloy. Compd. 583, 220–225 (2014)

    Article  CAS  Google Scholar 

  23. E. Paimozd, A. Ghasemi, A. Jafari et al., Influence of acid catalysts on the structural and magnetic properties of nanocrystalline barium ferrite prepared by sol–gel method. J. Magn. Magn. Mater. 320(23), 137–140 (2018)

    Article  Google Scholar 

  24. S.L. Hu, J. Liu, Z.W. Liu et al., Effect of chemical co-precipitation process and calcination temperature on the properties of barium ferrite nano-powders. J. Magn. Mater. Devices 50(6), 12–17 (2019)

    Google Scholar 

  25. Z.X. Zeng, M.S. Lan, Q. Zhang et al., Effect of pH value on multiferroic properties of barium ferrite ceramics prepared by sol–gel method. J. Magn. Magn. Mater. 563, 169904 (2022)

    Article  CAS  Google Scholar 

  26. J.X. Qiu, M.Y. Gu, Magnetic nanocomposite thin films of BaFe12O19 and TiO2 prepared by sol–gel method. Anpl. Surf. Sci. 252(4), 888892 (2005)

    Google Scholar 

  27. J.C. Corral-Huacuz, G. Mendoza-Suárez, Preparation and magnetic properties of Ir–Co and La–Zn substituted barium ferrite powders obtained by sol–gel. J. Magn. Magn. Mater. 242, 430–433 (2002)

    Article  Google Scholar 

  28. K. Praveena, K. Sadhana, S. Matteppanavar et al., Effect of sintering temperature on the structural, dielectric and magnetic properties of Ni0.4Zn0.2Mn0.4Fe2O4 potential for radar absorbing. J. Magn. Magn. Mater. 423, 343–352 (2017)

    Article  CAS  Google Scholar 

  29. N.L. Tang, BET determination of specific surface area of ceramic powder. Silicate Bull. 02, 20–22 (1998)

    Google Scholar 

  30. J. Liu, X. Xue, Morphology and magnetic properties of SrFe12O19 synthesized with oxidized scale. Mater. Lett. 164, 579–582 (2016)

    Article  CAS  Google Scholar 

  31. A. Baykal, S. Yoku, S. Güner et al., Magneto-optical properties and Mössbauer investigation of BaxSryPbzFe12O19 hexaferrites. Ceram. Int. 43(4), 3475–3482 (2016)

    Article  Google Scholar 

  32. K.S. Novoselov, S.V. Dubonos, E. Hill et al., Microscopic view on a single domain wall moving through ups and downs of an atomic washboard potential. Physica E 22, 406–409 (2004)

    Article  Google Scholar 

  33. N.V. Matveev, I.V. Levashov, T.V. Volkov et al., Fabrication and use of a nanoscale Hall probe for measurements of the magnetic field induced by MFM tips. Nanotechnology 19(47), 475502 (2008)

    Article  Google Scholar 

  34. S.E. Shafraniuk, Thermoelectricity and Heat Transport in Graphene and Other 2D Nanomaterials (Elsevier, Amsterdam, 2018), pp.32–92

    Google Scholar 

  35. J. Jia, C. Liu, N. Ma et al., Exchange coupling controlled ferrite with dual magnetic resonance and broad frequency bandwidth in microwave absorption. Sci. Technol. Adv. Mater. 14(4), 045002 (2013)

    Article  CAS  Google Scholar 

  36. J. Li, S. He, K. Shi et al., Coexistence of broad-bandwidth and strong microwave absorption in Co2+–Zr4+ co-doped barium ferrite ceramics. Ceram. Int. 44(6), 6953–6958 (2018)

    Article  CAS  Google Scholar 

  37. D.F. Wan, Magnetic Physics (Publishing House of Electronics Industry, Beijing, 1994), pp.112–122

    Google Scholar 

  38. L. Wang, X.F. Yu, X. Li et al., MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption. Chem. Eng. J. 383, 123099 (2020)

    Article  CAS  Google Scholar 

  39. L. Long, E.Q. Yang, X.S. Qi et al., Positive and reverse core/shell structure CoxFe3-xO4/MoS2 and MoS2/CoxFe3-xO4 nanocomposites: selective production and outstanding electromagnetic absorption comprehensive performance. ACS Sustain. Chem. Eng. 8(1), 613–623 (2020)

    Article  CAS  Google Scholar 

  40. T.Y. Hwang, Y.M. Choi, Y.S. Song et al., A noble gas sensor platform: linear dense assemblies of single-walled carbon nanotubes (LACNTs) in a multi-layered ceramic/metal electrode system (MLES). J. Mater. Chem. C 6(5), 972–979 (2018)

    Article  CAS  Google Scholar 

  41. C. Li, X. Qi, X. Gong et al., Magnetic-dielectric synergy and interfacial engineering to design yolk-shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption. Nano Res. 15, 6761–6771 (2022)

    Article  CAS  Google Scholar 

  42. J.J. Zhang, X.S. Qi, X. Gong et al., Microstructure optimization of core@shell structured MSe2/FeSe2@MoSe2 (M=Co, Ni) flower-like multicomponent nanocomposites towards high-efficiency microwave absorption. J. Mater. Sci. Technol. 128, 59–70 (2022)

    Article  Google Scholar 

  43. X. Wang, W. Cao, M. Cao et al., Assembling nano-microarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 32, 2002112 (2020)

    Article  CAS  Google Scholar 

  44. J.H. Luo, M.N. Feng, Z.Y. Dai et al., MoS2 wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption. Nano Res. 15, 5781–5789 (2022)

    Article  CAS  Google Scholar 

  45. R. Wang, E. Yang, X. Qi et al., Constructing and optimizing core@shell structure CNTs@MoS2 nanocomposites as outstanding microwave absorbers. Appl. Surf. Sci. 516, 146159 (2020)

    Article  CAS  Google Scholar 

  46. C. Li, Z. Li, X. Qi et al., A generalizable strategy for constructing ultralight three-dimensional hierarchical network heterostructure as high-efficient microwave absorber. J. Colloid Interface Sci. 605, 13–22 (2021)

    Article  Google Scholar 

  47. S. Wang, K.F. Chen, M. Wang et al., Controllable synthesis of nickel nanowires and the application in high sensitivity, stretchable strain sensor for body motion sensing. J. Mater. Chem. C 6(17), 4737–4745 (2018)

    Article  CAS  Google Scholar 

  48. Z.J. Shen, C.B. Liu, H.L. Yang et al., Fabrication of hollow cube dual-semiconductor Ln2O3/MnO/C nanocomposites with excellent microwave absorption performance. ACS Appl. Mater. Interfaces 13(24), 28689–28702 (2021)

    Article  CAS  Google Scholar 

  49. E.Q. Yang, X.S. Qi, R. Xie et al., Novel “203” type of heterostructured MoS2-Fe3O4-C ternary nanohybrid: synthesis, and enhanced microwave absorption properties. Appl. Surf. Sci. 442, 622–629 (2018)

    Article  CAS  Google Scholar 

  50. B. Wen, H.B. Yang, Y. Lin et al., Novel bimetallic MOF derived hierarchical Co@C composites modified with carbon nanotubes and its excellent electromagnetic wave absorption properties. J. Colloid Interface Sci. 605, 657–666 (2022)

    Article  CAS  Google Scholar 

  51. W. Huang, S. Wei, Y. Wang et al., A new broadband and strong absorption performance FeCO3/RGO microwave absorption nanocomposites. Materials 12(13), 2206 (2019)

    Article  CAS  Google Scholar 

  52. Z.C. Mo, R.L. Yang, D.W. Lu et al., Lightweight, three-dimensional carbon Nanotube@TiO2 sponge with enhanced microwave absorption performance. Carbon 144, 433–439 (2019)

    Article  CAS  Google Scholar 

  53. X. Sun, Y.H. Pu, F. Wu et al., 0D–1D–2D multidimensionally assembled Co9S8/CNTs/MoS2 composites for ultralight and broadband electromagnetic wave absorption. Chem. Eng. J. 423, 130132 (2021)

    Article  CAS  Google Scholar 

  54. J.L. Liu, P. Zhang, X.K. Zhang et al., Synthesis and microwave absorbing properties of La-doped Sr-hexaferrite nanopowders via sol–gel auto-combustion method. Rare Met. 36(9), 704–710 (2017)

    Article  CAS  Google Scholar 

  55. X.Y. Wang, S.C. Wei, B. Wang et al., Doping sites, magnetic, and microwave absorption properties of barium ferrites with multiple magnetic resonances. J. Mater. Sci. 34(4), 310 (2023)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the project team assistance with funding. Many thanks to the tutor for his thoughtful and thorough guidance.

Funding

The work was supported by the financial supports from National Natural Science Foundation of China (Project 51905543), National Defense Science and Technology Excellence Young Scientists Foundation (Project 2017-JCJQ-ZQ-001).

Author information

Authors and Affiliations

Authors

Contributions

XW: methodology, formal analysis, writing—original draft, and writing—review and editing. BW: formal analysis and writing—review and editing. SW: conceptualization, methodology, and resources. YW: software and resources. YL: methodology, resources, and writing—review and editing.

Corresponding author

Correspondence to Shicheng Wei.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, B., Wei, S. et al. Effect of sintering temperature on the microstructure, magnetic, and microwave absorption properties of M-type barium ferrite nanoparticles prepared by sol–gel method. J Mater Sci: Mater Electron 34, 1045 (2023). https://doi.org/10.1007/s10854-023-10400-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10400-2

Navigation