Skip to main content
Log in

Role of post-transition metal (Bi2O3) on the structural, microstructural and humidity sensing behavior of Bi@Zinc ferrites composite for room temperature operatable humidity sensors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The adsorption process is the most significant component of the amazing surface phenomena of that are displayed by bismuth-substituted zinc ferrites. Adsorption is the underlying principle that makes humidity sensors possible. As a result, rare earth-doped ferrites are an excellent choice for use in applications involving humidity sensors. Considering this, the current study involves the preparation of bismuth (Bi3 +) oxide-substituted zinc ferrites by the solution combustion technique. The typical formula for these ferrites is Bi@ZnFe2O4 (x = 0–0.05). An investigation of the influence of the Bi substitution on the structural, microstructural, and humidity characteristics was carried out. Up to 0.2 mol/% dopants, the X-ray diffraction analysis showed evidence of the creation of a cubic spinel structure. The Scherer technique, which has a range of 20 to 39 nm, was used to determine the average crystallite size of the sample. When nanoparticles are included in samples, the total amount of surface area that is necessary to favour adsorption processes in the samples is significantly increased. Micrographs taken using a scanning electron microscope revealed that the surfaces in question had a porous and irregular structure, as evidenced by the existence of holes and pores. The superparamagnetic behavior of the sample was confirmed by vibrating magnetometer. We noticed a decrease in resistance as the relative humidity increased from 11 to 97%, and we saw an increase in the sensing response as the relative humidity increased. Both of these trends were detected over the whole range of relative humidity. It has been determined that the highest humidity hysteresis occurs when the relative humidity is 54%. The amount of time it took for the sensor to respond was timed at 79 s, and the amount of time it took to recover was timed at 91 s. There is not much of a disparity between the sensing response and recuperation time. The higher concentration of Bi i. e 0.03 mol% exhibits excellent humidity sensing behavior. Because Bismuth is non magnetic material, due to this material morphology increases. Morphology increases the humidity behaviour of the samples increases in our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig.6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. The data that support the findings of this study are not openly available due to unpublished this work anywhere and are available from the corresponding author upon reasonable request.

References

  1. V.J. Angadi, I.S. Yahia, H.Y. Zahran, M.C. Oliveira, E. Longo, S.P. Kubrin, S.O. Manjunatha, R.A. Ribeiro, M.H. Ghozza, J. Magn. Magn. Mater 562, 169789 (2022)

    Article  CAS  Google Scholar 

  2. S. Zhang, Bo. Cheng, Z. Gao, Di. Lan, Z. Zhao, F. Wei, Q. Zhu, Lu. Xinpo, Wu. Guanglei, J. Alloy. Compd. 8939, 162343 (2022)

    Article  Google Scholar 

  3. Di. Lan, Z.G.Z. Zhao, K. Kou, Wu. Hongjing, Comp. Commun. 26, 100767 (2021)

    Article  Google Scholar 

  4. A. Balamurugan, R. Shunmuga Priya, E. Priyanka Chaudhary, T. Ranjith Kumar, I.C. Srinivas, B.C. Yadav, D.L. Sastry, Ceram. Int. 48, 4874–4885 (2022)

    Article  CAS  Google Scholar 

  5. R. Shunmuga Priya, E. Priyanka Chaudhary, K.A. Ranjith, Ch. Balamurugan, G. Srinivas, B.C. Prasad, D.L.S. Yadav, Ceram. Int. 47, 15995–16008 (2021)

    Article  CAS  Google Scholar 

  6. K.M. Srinivasamurthy, A. El-Denglawey, K. Manjunatha, V. Jagadeesha Angadi, M.C. Oliveira, E. Longo, S.R. Lázaro, R.A.P. Ribeiro, J. Mater. Chem. C 10, 3418–3428 (2022)

    Article  CAS  Google Scholar 

  7. P.P. Naik, R.B. Tangsali, J. Alloys Compd. 723, 266–275 (2017)

    Article  CAS  Google Scholar 

  8. K. Manjunatha, I.C. Sathish, S.P. Kubrin, A.T. Kozakov, T.A. Lastovina, A.V. Nikolskii, K.M. Srinivasamurthy, Mehaboob Pasha, V. Jagadeesha Angadi, J. Mater. Sci: Mater. Electron. 30, 10162–10171 (2019)

    CAS  Google Scholar 

  9. F. Muthafar, Sean Li Al-Hilli, Kassim S. Kassim, Mater. Chem. Phys. 128, 127–132 (2011)

    Article  Google Scholar 

  10. M.A. Ahmed, E. Ateia, S.I. El-Dek, Mater. Lett. 57, 4256–4266 (2003)

    Article  CAS  Google Scholar 

  11. A. El-Denglawey, K. Manjunatha, E. Vijay Sekhar, B. Chethan, V. Jian Zhuang, V. Jagadeesha Angadi, Ceram. Int. 47, 28614–28622 (2021)

    Article  CAS  Google Scholar 

  12. Pranav P. Naik, R.B. Tangsali, S.S. Meena, S.M. Yusuf, Mater. Chem. Phys. 191, 215–224 (2017)

    Article  CAS  Google Scholar 

  13. N. Ramprasad, G.V. Florin Tudorache, AJagadeesha Gowda, KS Kantharaj. El-Denglawey, K.V. Arjuna Gowda, K. Manjunatha, V. Jagadeesha Angadi, The effect of Gd as a dopant in crystal structure and on its electrical and humidity sensing behaviour of Co2+ Cr23+ O4 for possible application in sensors. J. Mater. Sci.: Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-08293-8

    Article  Google Scholar 

  14. C. Rath, P. Mohanty, J. Supercond. Novel Magn. 24, 629 (2010)

    Article  Google Scholar 

  15. M. Younis, M. Saleem, S. Atiq, S. Naseem, Ceram. Int. 44, 10229 (2018)

    Article  CAS  Google Scholar 

  16. D.P. Dutta, J. Manjanna, A.K. Tyagi, J. Appl. Phys. 106, 043915 (2009)

    Article  Google Scholar 

  17. V. Jagadeesha Angadi, K. Manjunatha, Marisa C. Oliveira, Elson Longo, Sergio R. de Lázaro, A.P. Renan, S.V. Bhat. Ribeiro, Appl. Surface Sci. 574, 151555 (2022)

    Article  CAS  Google Scholar 

  18. K.M. Srinivasamurthy, V. Jagadeesha Angadi, A. El-Denglawey, K. Manjunatha, M.C. Oliveira, E. Longo, S.R. Lázaro, R.A.P. Ribeiro, J. Mater. Chem. C 10, 4196–4207 (2022)

    Article  Google Scholar 

  19. A.D. Arelaro, E. Lima, L.M. Rossi, P.K. Kiyohara, H.R. Rechenberg, J. Magn. Magn. Mater. 320, 335–338 (2008)

    Article  Google Scholar 

  20. Y. Il Kim, D. Kim, C.S. Lee, B. Phys, Condens., Matter. 337, 42–51 (2003)

    Google Scholar 

  21. V.M. Khot, A.B. Salunkhe, N.D. Thorat, R.S. Ningthoujam, S.H. Pawar, Dalt. Trans. 42, 1249–1258 (2013)

    Article  CAS  Google Scholar 

  22. K.M. Srinivasamurthy, K. Manjunatha, A. El-Denglawey, R. Rajaramakrishna, S.P. Kubrin, V. Apsar Pasha, V. Jagadeesha Angadi, Mater. Chem. Phys. 275, 125222 (2022)

    Article  CAS  Google Scholar 

  23. M.H. Abdellatif, G.M. El-Komyb, A.A. Azab, J. Magn. Magn. Mater. 442, 445–452 (2017)

    Article  CAS  Google Scholar 

  24. L. Zhao, H. Yang, X. Zhao, L. Yu, Y. Cui, S. Feng, Mater. Lett. 60, 1–6 (2006)

    Article  CAS  Google Scholar 

  25. M.A. Yousuf, M.M. Baig, N.F. Al-khalli, M.A. Khan, M.F.A. Aboud, I. Shakir, M.F., Ceram. Int. 45(8), 10936–10942 (2019)

    Article  CAS  Google Scholar 

  26. M. Veverka, K. Závěta, O. Kaman, P. Veverka, K. Knížek, E. Pollert, M. Burian, P. Kašpar, J. Phys. D. Appl. Phys. 47, 065503 (2014)

    Article  CAS  Google Scholar 

  27. M. Jeun, S. Park, G.H. Jang, K.H. Lee, A.C.S. Appl, Mater. Interfaces. 6, 16487–16492 (2014)

    Article  CAS  Google Scholar 

  28. J.I. Langford, A.J.C. Wilson, J. Appl. Crystallogr. 11, 102–113 (1978)

    Article  CAS  Google Scholar 

  29. K. Manjunatha, P.Z. Si, G.J. Gowda, A. El-Denglawey, V.J. Angadi, Ceram. Int. 48, 11654–11661 (2022)

    Article  CAS  Google Scholar 

  30. V. Jagadeesha Angadi, K. Manjunatha, S.P. Kubrin, A.T. Kozakov, A.G. Kochur, A.V. Nikolskii, I.D. Petrov, S.I. Shevtsova, N.H. Ayachit, J. Alloys Compd. 842, 155805 (2020)

    Article  Google Scholar 

  31. Touseef Ahmad Para, Shaibal Kanti Sarkar, Challenges in rietveld refinement and structure visualization in ceramics. Adv. Ceram. Mater. (2020). https://doi.org/10.5772/intechopen.96065

    Article  Google Scholar 

  32. K. Manjunatha, V. Jagadeesha Angadi, R. Rajaramakrishna, U. Mahaboob Pasha, J. Novel Magn. (2020). https://doi.org/10.1007/s10948-020-05549-4

    Article  Google Scholar 

  33. G. Kumar, J. Shah, R.K. Kotnala, V.P. Singh, G. Sarveena, S.E. Garg, K.M. Shirsath, MSingh Batoo, Mater. Reser. Bullet. 63, 216 (2015)

    Article  CAS  Google Scholar 

  34. V.J. Angadi, A. Pasha, M. Al-Dossari, M. et al. High-performance LPG sensing behaviour of CoCr2-xCexO4 (x = 0 to 0.02) for sensor applications. J Mater Sci: Mater Electron 34, 318 (2023). https://doi.org/10.1007/s10854-022-09725-1

    Article  CAS  Google Scholar 

  35. K. Praveena, G.V. Jagadeesha Gowda, V.A. El-Denglawey, V. Jagadeesha Angadi, J. Mater. Sci.: Mater. Electron. 33, 5678–5685 (2022)

    CAS  Google Scholar 

  36. M. Naeem, M. Fahad, M. Javed, I. Hussain, J. Alloys Compd. 509, 5119–5126 (2011)

    Article  Google Scholar 

  37. V.G. Hiremath, I.S. Yahia, H.Y. Zahran et al., Humidity sensing behaviour of Rubidium-doped Magnesium ferrite for sensor applications. J Mater Sci: Mater Electron 33, 11591–11600 (2022). https://doi.org/10.1007/s10854-022-08131-x

    Article  CAS  Google Scholar 

  38. M. Purnanandam, T. Bhimasankaram, S.V. Suryanarayana, J. Mater. Sci. 26, 6131–6134 (1991)

    Article  CAS  Google Scholar 

  39. V.J. Angadi, K. Manjunatha, N.H. Ayachit, Correlation of internal strain and size with electrical and magnetic properties of Ce3+-doped manganese ferrimagnetic nanoparticles. J Mater Sci: Mater Electron 32, 9275–9293 (2021). https://doi.org/10.1007/s10854-021-05592-4

    Article  CAS  Google Scholar 

  40. T.S. Mondal, S. Bhattacharjee, A. Roychowdhury, S. Majumder, D. Das, M.K. Mitra, C.K. Ghosh, Mater. Res. Express 2, 046102 (2015)

    Article  Google Scholar 

  41. P.K. Roy, B.B. Nayak, J. Bera, J. Magn. Magn. Mater. 320, 1128–1132 (2008)

    Article  CAS  Google Scholar 

  42. D. Pal, M. Mandal, A. Chaudhuri, B. Das, D. Sarkar, K. Mandal, J. Appl. Phys. 108, 124317–124325 (2010)

    Article  Google Scholar 

  43. R.S. Pandav, R.P. Patil, S.S. Chavan, I.S. Mulla, P.P. Hankare, J. Magn. Magn. Mater. 417, 407–412 (2016)

    Article  CAS  Google Scholar 

  44. A. El-Denglawey, K. Manjunatha, E. Vijaya Sekhar, B. Chethan, JianZhuang, V. Jagadeesha Angadi, Ceram. Int. 47, 28614–28622 (2021)

    Article  CAS  Google Scholar 

  45. B. Chethan, Y.T. Ravikiran, S.C. Vijayakumari, H.G. Rajprakash, S. Thomas, Sens. Actuators A. Phys. 280, 466 (2018)

    Article  CAS  Google Scholar 

  46. S. Pratibha, B. Chethan, Y.T. Ravikiran, N. Dhananjaya, V. Jagadeesh Angadi, Sens. Actuators A Phys. 304, 111903 (2020)

    Article  CAS  Google Scholar 

  47. V.R. Khadse, S. Thakur, K.R. Patil, P. Patil, Sens. Actuators. B Chem. 203, 229 (2014)

    Article  CAS  Google Scholar 

  48. A. El-Denglawey, K. Manjunatha, V. Jagadeesha Angadi, B. Chethan, S.B. Somvanshi, J. Mater. Sci.: Mater. Electron. 32, 23554–23565 (2021)

    CAS  Google Scholar 

  49. K.P. Biju, M.K. Jain, Meas. Sci. Technol. 18, 2991 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their sincere appreciation to the Researchers Supporting Project number (RSPD2023R682), King Saud University, Riyadh, Saudi Arabia for the support.

Author information

Authors and Affiliations

Authors

Contributions

VVS: Conceptualization, Methodology, Software and Writing- Original draft preparation, AYHJ: Conceptualization, Analysis. AP: Analysis of humidity data. JAV: Conceptualization, Reviewing and Editing, MU: Editing. SFS: Editing. BP: software.

Corresponding authors

Correspondence to H. J. Amith Yadav, V. Jagadeesha Angadi or Mohd Ubaidullah.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veena, V.S., Amith Yadav, H.J., Pasha, A. et al. Role of post-transition metal (Bi2O3) on the structural, microstructural and humidity sensing behavior of Bi@Zinc ferrites composite for room temperature operatable humidity sensors. J Mater Sci: Mater Electron 34, 992 (2023). https://doi.org/10.1007/s10854-023-10392-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10392-z

Navigation