Skip to main content
Log in

Characterization of natural dyes on ZnO and TiO2 thin films for applications in DSSC

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we present a comparative study of two types of dye-sensitized solar cells (DSSCs) fabricated using natural dyes extracted from Achiote seeds, Brazil and Taray bark. The dyes were impregnated in ZnO and TiO2 thin films. ZnO, TiO2, ZnO/dyes and TiO2/dyes structures were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), ultraviolet–visible spectroscopy (UV–Vis), infrared spectroscopy (IR spectroscopy) and current–voltage (I–V) techniques. IR analysis shows that the films impregnated with the dyes show anchoring to them and bands characteristic of COOH and OH functional groups. The results of UV–Vis spectroscopy show that the strongest absorption in the visible region is provided by dyes of the Achiote seeds, bark of Brazil and bark of Taray. The performance of the DSSCs device was evaluated to determine the influence of ZnO/dyes and TiO2/dyes photoanodes with platinum photocathodes. The manufactured DSSCs showed a conversion efficiency for TiO2 of η = 3.65, 3.63 and 3.98% and for ZnO-based DSSCs of η  = 3.09, 2.81 and 2.54% for Achiote seed, Brazilian bark and Taray bark, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. L.M. Goncalves, V. De Zea Bermúdez, H.A. Ribeiro, A.M. Méndez, Dye-sensitized solar cells: a safe bet for the future. Energy Environ. Sci. 1, 65–67 (2007). https://doi.org/10.1039/B807236A

    Article  Google Scholar 

  2. P.V. Kamat, Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J. Phys. Chem. C. 111, 34–60 (2007). https://doi.org/10.1021/jp066952u

    Article  CAS  Google Scholar 

  3. P.D. Moskowitz, V.M. Fthenakis, A checklist of suggested safe practices for the storage, distribution, use and distribution, use and disposal of toxic and hazardous gases in photovoltaic cell production. Sol. Cells 31, 13–25 (1991). https://doi.org/10.1016/0379-6787(91)90094-6

    Article  Google Scholar 

  4. P. Moskowitz, V. Fthenakis, Toxic materials released from photovoltaic modules during fires: health risks. Sol Energy Mater Sol Cells 29, 63–71 (1990). https://doi.org/10.1016/0379-6787(90)90015-W

    Article  CAS  Google Scholar 

  5. B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature (1991). https://doi.org/10.1038/353737a0

    Article  Google Scholar 

  6. S. Aghazada, M. Nazeeruddin, Ruthenium complexes as sensitizers in dye-sensitized solar cells. Inorganics (2018). https://doi.org/10.3390/inorganics6020052

    Article  Google Scholar 

  7. A.K. Burrell, D.L. Officer, P.G. Plieger, D.C. Reid, Synthetic routes to multiporphyrin arrays. Chem. Rev. 101(9), 2751–2796 (2001). https://doi.org/10.1021/cr0000426

    Article  CAS  Google Scholar 

  8. L.K. Singh, B.P. Koiry, Natural dyes and their effect on efficiency of TiO2 based DSSCs: a comparative study. Mater. today: Proc. 5, 2112–2122 (2018). https://doi.org/10.1016/j.matpr.2017.09.208

    Article  CAS  Google Scholar 

  9. J. Fernando, G. Senadeera, Natural anthocyanins as photosensitizers for dye-sensitized solar devices. Curr. Sci. 95, 663–666 (2008)

    CAS  Google Scholar 

  10. N.J. Cherepy, G.P. Smestad, M. Grätzel, J.Z. Zhang, J. Phys Chem. B 101, 9342–9351 (1997). https://doi.org/10.1021/jp972197w

    Article  CAS  Google Scholar 

  11. P.M. Sirimanne, M.K.I. Senevirathna, E.V.A. Premalal, P.K. Pitigala, K. Tennakone, J. Photochem. Photobiol. A (2006). https://doi.org/10.1016/j.jphotochem.2005.07.003

    Article  Google Scholar 

  12. N.J. Cherepy, G.P. Smestad, M. Grätzel, J.Z. Zhang, J. Phys. Chem. 101, 9342–9351 (1997)

    Article  CAS  Google Scholar 

  13. G. Mazza, R. Brouillard, The mechanism of copigmentation of anthocyanins in aqueous solution. J. Phytochem 29(4), 1097–1102 (1990). https://doi.org/10.1016/0031-9422(90)85411-8

    Article  CAS  Google Scholar 

  14. G.F. Silva, F. Gamarra, A.D. Oliveira, F.A. Cabral, Extraction of bixin from annatto seeds using supercritical carbon dioxide. Braz. J. Chem. Eng. 25, 419–426 (2008). https://doi.org/10.1590/S0104-66322008000200019

    Article  CAS  Google Scholar 

  15. N.M. Gómez-Ortíz et al., Dye-sensitized solar cells with natural dyes extracted from achiote seeds. Sol. Energy Mater. Sol. Cells 94(1), 40–44 (2010). https://doi.org/10.1016/j.solmat.2009.05.013

    Article  CAS  Google Scholar 

  16. D.A. Haryanto, S. Landuma, A. Purwanto, Fabrication of dye-sensitized solar cell (DSSC) using annato seeds (Bixa orellana Linn.), in AIP Conference Proceedings, vol. 1586, no. 1. American Institute of Physics, 2014), pp. 104–108. https://doi.org/10.1063/1.4866740

  17. R.W. Dapson, C.L. Bain, Brazilwood, sappanwood, brazilin and the red dye brazilein: from textile dyeing and folk medicine to biological staining and musical instruments. Biotech. Histochem. 90(6), 401–423 (2015). https://doi.org/10.3109/10520295.2015.1021381

    Article  CAS  Google Scholar 

  18. N.P. Nirmal et al., Brazilin from Caesalpinia sappan heartwood and its pharmacological activities: a review. Asian Pac. J. Trop. Med. 8(6), 421–430 (2015). https://doi.org/10.1016/j.apjtm.2015.05.014

    Article  CAS  Google Scholar 

  19. M.R.R. Kooh, V.N. Yoong, P. Ekanayake, Density functional theory (DFT) and time-dependent density functional theory (TDDFT) studies of selected ancient colourants as sensitizers in dye-sensitized solar cells. J. Natl. Sci. Found. Sri Lanka (2014). https://doi.org/10.4038/jnsfsr.v42i2.6996

    Article  Google Scholar 

  20. A. Garcia-Campoy, E. Garcia, A. Muñiz-Ramirez, Phytochemical and pharmacological study of the Eysenhardtia Genus. Plants 9(9), 1124 (2020). https://doi.org/10.3390/plants9091124

    Article  CAS  Google Scholar 

  21. R.M. Perez-Gutierrez, A.H. Garcia-Campoy, A. Muñiz-Ramirez, Properties of flavonoids isolated from the bark of Eysenhardtia polystachya and their effect on oxidative stress in streptozotocin-induced diabetes mellitus in mice. Oxid. Med. Cell. Longev. (2016). https://doi.org/10.1155/2016/9156510

    Article  Google Scholar 

  22. A.G. Flota Robledo, J. Pantoja Enríquez, C.A. Meza Avendaño, G. Pérez Hernández, P.J. Juárez Gutiérrez, DSSCs based on ZnO photoelectrodes sensitized with natural dyes extracted from the bark of Brazil and Taray. J. Optoelectron. Biomed. Mater. 14(2), 29–34 (2022). https://doi.org/10.15251/JOBM.2022.142.29

    Article  Google Scholar 

  23. E.R. Morales, N.R. Mathews, D. Reyes-Coronado, C.R. Magaña, D.R. Acosta, G. Alonso-Nunez, X. Mathew, Physical properties of the CNT: TiO2 thin films prepared by sol–gel dip coating. Sol. Energy 86(4), 1037–1044 (2012). https://doi.org/10.1016/j.solener.2011.06.027

    Article  CAS  Google Scholar 

  24. P.M. Kibasomba, S. Dhlamini, M. Maaza, C.P. Liu, M.M. Rashad, D.A. Rayan, B.W. Mwakikunga, Strain and grain size of TiO2 nanoparticles from TEM, Raman spectroscopy and XRD: The revisiting of the Williamson-Hall plot method. Result. Phys. 9, 628–635 (2018). https://doi.org/10.1016/j.rinp.2018.03.008

    Article  Google Scholar 

  25. N. Dhananjaya, H. Nagabhushana, B.M. Nagabhushana, B. Rudraswamy, S.C. Sharma, D.V. Sunitha, R.P.S. Chakradhar, Effect of different fuels on structural, thermo and photoluminescent properties of Gd2O3 nanoparticles. Spectrochimica Acta Part A 96, 532–540 (2012). https://doi.org/10.1016/j.saa.2012.04.067

    Article  CAS  Google Scholar 

  26. R. Syafinar, N. Gomesh, M. Irwanto, M. Fareq, Y.M. Irwan, Chlorophyll pigments as nature based dye for dye-sensitized solar cell (DSSC). Energy Procedia 79, 896–902 (2015). https://doi.org/10.1016/j.egypro.2015.11.584

    Article  CAS  Google Scholar 

  27. T.C. Li, T.H. Kuan, J.F. Lin, Effects of inclination angle during Al-doped ZnO film deposition and number of bending cycles on electrical, piezoelectric, optical, and mechanical properties and fatigue life. J. Vacuum Sci. Technol. A 34(2), 021501 (2016). https://doi.org/10.1116/1.4936093

    Article  CAS  Google Scholar 

  28. G. Wang, L. Xu, J. Zhang, T. Yin, D. Han, Enhanced photocatalytic activity of powders (P25) via calcination treatment. Int. J. Photoenergy (2012). https://doi.org/10.1155/2012/265760

    Article  Google Scholar 

  29. H. Zhou, H. Alves, D.M. Hofmann, W. Kriegseis, B.K. Meyer, G. Kaczmarczyk, A. Hoffmann, Behind the weak excitonic emission of ZnO quantum dots: ZnO/Zn (OH) 2 core-shell structure. Appl. Phys. Lett. 80(2), 210–212 (2002). https://doi.org/10.1063/1.1432763

    Article  CAS  Google Scholar 

  30. N.K. Elumalai, C. Vijila, R. Jose, A. Uddin, S. Ramakrishna, Metal oxide semiconducting interfacial layers for photovoltaic and photocatalytic applications. Mater. Renew. Sustain. Energy 4(3), 1–25 (2015). https://doi.org/10.1007/s40243-015-0054-9

    Article  Google Scholar 

  31. H. Nan, H.P. Shen, G. Wang, S.D. Xie, G.J. Yang, H. Lin, Studies on the optical and photoelectric properties of anthocyanin and chlorophyll as natural co-sensitizers in dye sensitized solar cell. Opt. Mater. 73, 172–178 (2017). https://doi.org/10.1016/j.optmat.2017.07.036

    Article  CAS  Google Scholar 

  32. Á.R. Hernandez-Martinez, G.A. Molina, A. Rodríguez-Torres, B. Ledesma-Mendoza, A. Del Real, J. Barroso-Flores, M. Estevez, Fluorescence decay rate of selected compounds from Eysenhardtia polystachya extracts and their viability as biosensors. Mater. Sci. Eng.: C 104, 109978 (2019). https://doi.org/10.1016/j.msec.2019.109978

    Article  CAS  Google Scholar 

  33. G.H. Radloff, F.M. Naba, D.B. Ocran-Sarsah, M.E. Bennett, K.M. Sterzinger, A.T. Armstrong, M.B. Dawadi, Fabrication and characterization of highly efficient dye-sensitized solar cells with composited dyes. Dig. J. Nanomater. Biostruct. (DJNB) (2022). https://doi.org/10.15251/DJNB.2022.172.457

    Article  Google Scholar 

  34. S. Saravanan, R. Kato, M. Balamurugan, S. Kaushik, T. Soga, Efficiency improvement in dye sensitized solar cells by the plasmonic effect of green synthesized silver nanoparticles. J. Sci.: Adv. Mater. Devices 2(4), 418–424 (2017). https://doi.org/10.1016/j.jsamd.2017.10.004

    Article  Google Scholar 

  35. N.M. Gómez-Ortíz, I.A. Vázquez-Maldonado, A.R. Pérez-Espadas, G.J. Mena-Rejón, J.A. Azamar-Barrios, G. Oskam, Dye-sensitized solar cells with natural dyes extracted from achiote seeds. Sol. Energy Mater. Sol. Cells 94(1), 40–44 (2010). https://doi.org/10.1016/j.solmat.2007.05.014

    Article  CAS  Google Scholar 

  36. E. Guillén, F. Casanueva, J.A. Anta, A. Vega-Poot, G. Oskam, R. Alcántara, J. Martín-Calleja, Photovoltaic performance of nanostructured zinc oxide sensitised with xanthene dyes. J. Photochem. Photobiol. A: Chem. 200(2–3), 364–370 (2008). https://doi.org/10.1016/j.jphotochem.2008.08.015

    Article  CAS  Google Scholar 

  37. A.E. Suliman, Y. Tang, L. Xu, Preparation of ZnO nanoparticles and nanosheets and their application to dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 91(18), 1658–1662 (2007). https://doi.org/10.1016/j.solmat.2007.05.014

    Article  CAS  Google Scholar 

  38. A.B. Martinson, J.W. Elam, J.T. Hupp, M.J. Pellin, ZnO nanotube based dye-sensitized solar cells. Nano Lett. 7(8), 2183–2187 (2007). https://doi.org/10.1021/nl070160+

    Article  CAS  Google Scholar 

  39. Z. Ji, G. Natu, Z. Huang, Y. Wu, Linker effect in organic donor–acceptor dyes for p-type NiO dye sensitized solar cells. Energy Environ. Sci. 4(8), 2818–2821 (2011). https://doi.org/10.1039/c1ee01527c

    Article  CAS  Google Scholar 

  40. M. Quintana, T. Edvinsson, A. Hagfeldt, G. Boschloo, Comparison of dye-sensitized ZnO and TiO2 solar cells: studies of charge transport and carrier lifetime. J. Phys. Chem. C 111(2), 1035–1041 (2007). https://doi.org/10.1021/jp065948f

    Article  CAS  Google Scholar 

  41. S. Shah, N.N. S. Baharun, S.N.F. Yusuf, A.K. Arof, Efficiency enhancement of dye-sensitized solar cells (DSSCs) using copper nanopowder (CuNW) in TiO2 as photoanode. in IOP Conference Series: Materials Science and Engineering, vol. 515, no. 1. IOP Publishing, 2019, p. 012002. https://doi.org/10.1088/1757-899X/515/1/012002

  42. Z. Li, L. Yu, H. Wang, H. Yang, H. Ma, TiO2 passivation layer on ZnO hollow microspheres for quantum dots sensitized solar cells with improved light harvesting and electron collection. Nanomaterials 10(4), 631 (2020). https://doi.org/10.3390/nano10040631

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank UJAT and CINVESTAV-Unidad Mérida for support in this work. A. G. Flota Robledo thanks doctoral fellowship No. 606042 by CONACyT.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to J. Pantoja Enríquez.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robledo, A.G.F., Enríquez, J.P., Avendaño, C.A.M. et al. Characterization of natural dyes on ZnO and TiO2 thin films for applications in DSSC. J Mater Sci: Mater Electron 34, 980 (2023). https://doi.org/10.1007/s10854-023-10381-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10381-2

Navigation