Skip to main content
Log in

Zinc aluminate (ZnAl2O4) applied in the development of a propane gas sensor and in the design of a digital gas detector

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

When a propane gas sensor is developed based on a synthesized material, the goal is to use it in the development of new prototypes, which are applied in health and safety. In this work, zinc aluminate powders (ZnAl2O4) were synthesized using the colloidal method assisted with microwave radiation. The powders were characterized by X-ray diffraction, SEM, and TEM microscopy. With the diffraction analysis, the crystalline phase of the ZnAl2O4 oxide was demonstrated and with the electron microscopy images, the morphology of the particles was analyzed. In addition, based on these images, the particle size of the compound was estimated. With the calcined powders at 200 °C of ZnAl2O4, pellets were manufactured and electrically characterized (dynamic electrical tests) in atmospheres of dynamic propane at 200 °C, obtaining changes in electrical resistance as a function of time. The dynamic concentration of propane (1000 ppm) greatly influenced the excellent dynamic response in these operating conditions. Based on the electrical response of the sensor (ZnAl2O4), a first-order mathematical model was proposed and this was used to corroborate the stability of the sensor, its response to frequency and it was evaluated at 3s in order to estimate the resistance of the sensor \({R}_{p}\left(t\right)\) when the sensor is exposed to propane gas. With the result obtained from resistance \({\left.{R}_{p}\left(t\right)\right|}_{t=3}\), a prototype gas detector was designed based on the PIC16F887A microcontroller whose characteristics are: operating temperature of 200 °C, 1000 ppm operating concentration, 3s response time, 5 V supply voltage, 110 V alarm signal, optocoupler protection circuit, easy operation and easy repair. Our prototype has practical application in industries where high temperature safety systems are required, for example: boiler chimneys and heat exchangers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M.N. Norizan, N. Abdullah, N.A. Halim, S.Z. Ngah, I.S. Mohamad, Nanomater 12, 2278 (2022)

    Article  CAS  Google Scholar 

  2. X. Gao, T. Zhang, Sens. Actuators B Chem. 277, 604–633 (2018)

    Article  CAS  Google Scholar 

  3. M. Dadkhah, J.M. Tulliani, Chemosensors 10, 57 (2022)

    Article  CAS  Google Scholar 

  4. W. Qin, Z. Yuan, H. Gao, R. Zhang, F. Meng, Sens. Actuators B Chem. 341, 130015 (2021)

    Article  CAS  Google Scholar 

  5. E.E. Ateia, M.M. Arman, M. Morsy, Appl. Phys. A 125, 883 (2019)

    Article  CAS  Google Scholar 

  6. A. Alharbi, B. Junker, M. Alduraibi, A. Algarni, U. Weimar, N. Bârsan, Sensors 21, 8462 (2021)

    Article  CAS  Google Scholar 

  7. F. Liu, B. Wang, X. Yang, Y. Guan, Q. Wang, X. Lianga, P. Sun, Y. Wang, G. Lu, Sens. Actuators B Chem. 240, 148–157 (2017)

    Article  CAS  Google Scholar 

  8. J.A. Ramírez-Ortega, H. Guillén-Bonilla, A. Guillén-Bonilla, V. María Rodríguez-Betancourtt, A. Sánchez-Martínez, J. Trinidad, L. Guillén-Bonilla, E. Gildo-Ortiz, J. Huízar-Padilla, Reyes-Gómez, J. Mater. Sci. Mater. 33, 18268–18283 (2022)

    Article  Google Scholar 

  9. A. Jamal, M.M. Rahman, S.B. Khan, M. Faisal, K. Akhtar, M.A. Rub, A.M. Asiri, A.O. Al-Youbi, Appl. Surf. Sci. 261, 52–58 (2012)

    Article  CAS  Google Scholar 

  10. C.R. Michel, N.L. López Contreras, M.A. López-Álvarez, A.H. Martínez-Preciado, Sens. Actuators B Chem. 171–172, 686–690 (2012)

    Article  Google Scholar 

  11. V.M. Rodríguez-Betancourtt, H. Guillén-Bonilla, J.T. Guillén-Bonilla, Y.L. Casallas-Moreno, J.A. Ramírez-Ortega, J.P. Morán-Lázaro, M.L. Olvera-Amador, A. Guillén-Bonilla, Mater. Today Commun. 31, 103579 (2022)

    Article  Google Scholar 

  12. A. Singh, A. Singh, S. Singh, P. Tandon, Chem. Phys. Lett. 646, 4–46 (2016)

    Article  Google Scholar 

  13. E. Fazio, S. Spadaro, C. Corsaro, G. Neri, S. Gianluca Leonardi, F. Neri, N. Lavanya, C. Sekar, N. Donato, G. Neri, Sensors 21, 2494 (2021)

    Article  CAS  Google Scholar 

  14. A. Dey, Mater. Sci. Eng. B 229, 206–217 (2018)

    Article  CAS  Google Scholar 

  15. V.D. Kapse, Res. J. Chem. Sci. 5, 7–12 (2015)

    CAS  Google Scholar 

  16. B. Cheng, Z. Ouyang, B. Tian, Y. Xiao, S. Lei, Ceram. Int. 39, 7379–7386 (2013)

    Article  CAS  Google Scholar 

  17. E.S. Guillén-López, F. López-Urías, E. Muñoz-Sandoval, M. Courel-Piedrahita, M. Sanchez-Tizapa, H. Guillén-Bonilla, V.M. Rodríguez-Betancourtt, O. Blanco-Alonso, A. Guillén-Bonilla, J.P. Morán-Lázaro, Mater. Today Commun. 26, 102138 (2021)

    Article  Google Scholar 

  18. E. Huízar-Padilla, H. Guillén-Bonilla, A. Guillén-Bonilla, V.M. Rodríguez-Betancourtt, A. Sánchez-Martínez, J.T. Guillen-Bonilla, L. Gildo-Ortiz, J. Reyes-Gómez, Sensors 21, 2362 (2021)

    Article  Google Scholar 

  19. Z. Chen, E. Shi, W. Li, Y. Zheng, N. Wu, W. Zhong, J. Am. Ceram. Soc. 85, 2949–2955 (2002)

    Article  CAS  Google Scholar 

  20. M. Sumayya Ansari, B.B. Sinha, P.U. Debasis Sen, Y.D. Sastry, C.V. Kolekar, Ramana, Nanomater 12, 3015 (2022)

    Article  Google Scholar 

  21. R. Wojcieszak, M. Nawfal Ghazzal, Nanomater 12, 2452 (2021)

    Article  Google Scholar 

  22. G. Korotcenkov, Mater. Sci. Eng. B 139, 1–23 (2007)

    Article  CAS  Google Scholar 

  23. K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, S. Phanichphant, Sens. Actuator 160, 580–591 (2011)

    Article  CAS  Google Scholar 

  24. H. Guillén-Bonilla, J. Trinidad, V.M. Guillén-Bonilla, M. Rodríguez-Betancourtt, A. Jiménez-Rodríguez, E. Guillén-Bonilla, M.E. Huízar-Padilla, J.A. Sánchez-Morales, O. Ramírez-Ortega, Blanco-Alonso, Appl. Sci. 11, 9488 (2021)

    Article  Google Scholar 

  25. E. Delgado, C.R. Michel, Mater. Lett. 60, 1613–1616 (2006)

    Article  CAS  Google Scholar 

  26. H. Guillén–Bonilla, V.M. Rodríguez–Betancourtt, J.T. Guillén–Bonilla, L. Gildo–Ortiz, A. Guillén–Bonilla, Y.L. Casallas–Moreno, O. Blanco-Alonso, J. Reyes-Gómez, Sensors 18, 2299 (2018)

    Article  Google Scholar 

  27. S.D. Kapse, F.C. Raghuwanshi, V.D. Kapse, D.R. Patil, Curr. Appl. Phys. 12, 307–312 (2012)

    Article  Google Scholar 

  28. G. Confalonieri, N. Rotiroti, A. Bernasconi, M. Dapiaggi, Nanomater 10, 824 (2020)

    Article  CAS  Google Scholar 

  29. F. Tielens, M. Calatayud, R. Franco, J.M. Recio, J. Pérez-Ramírez, C. Minot, J. Phys. Chem. B 110, 988–995 (2006)

    Article  CAS  Google Scholar 

  30. R. Ianoş, R. Băbuţă, C. Păcurariu, R. Lazău, R. Istratie, C. Butaciu. Ceram. Int. 43, 8975–8981 (2017)

    Article  Google Scholar 

  31. D. Dhak, P. Pramanik, J. Am. Ceram. Soc. 89, 1014–1021 (2006)

    Article  CAS  Google Scholar 

  32. A. Fernandez-Osorio, C.E. Rivera, A. Vazquez-Olmos, J. Chavez, Dyes Pigment 119, 22–29 (2015)

    Article  CAS  Google Scholar 

  33. T. Tangcharoen, J.T. Thienprasert, C. Kongmark, J. Mater. Sci. Mater. Electron. 29, 8995–9006 (2018)

    Article  CAS  Google Scholar 

  34. V.V. Gorbunov, A.A. Shidlovskii, L.F. Shmagin, Combust. Explos. Shock Waves 19, 172–173 (1983)

    Article  Google Scholar 

  35. A. Guillén, V.M. Bonilla, H. Rodríguez Betancourtt, L. Guillén Bonilla, O. Gildo Ortiz, N.E. Blanco Alonso, J. Franco Rodríguez, A. Reyes Gómez, J. Casillas Zamora, T. Guillen Bonilla, J. Mater. Sci. Mater. Electron. 29, 15741–15753 (2018)

    Article  Google Scholar 

  36. Z.X. Deng, C. Wang, X.M. Sun, Y.D. Li, Inorg. Chem. 41, 869–873 (2002)

    Article  CAS  Google Scholar 

  37. L. Gildo Ortiz, H. Guillén Bonilla, J. Santoyo Salazar, L. Olvera, T.V.K. Karthik, E. Campos, J. Reyes Gómez, J. Nanomater. 2014, 8 (2014)

    Article  Google Scholar 

  38. E. Matijevic, Chem. Mater. 5, 412–426 (1993)

    Article  CAS  Google Scholar 

  39. V.K. LaMer, R.H. Dinegar, J. Am. Chem. Soc. 72, 4847–4854 (1950)

    Article  CAS  Google Scholar 

  40. J.A. Ramírez-Ortega, J.T. Guillén-Bonilla, A. Guillén-Bonilla, V.M. Rodríguez-Betancourtt, L. Gildo-Ortiz, O. Blanco-Alonso, V.M. Soto-García, M. Jiménez-Rodríguez, H. Guillén-Bonilla, Appl. Sci. 11, 9536 (2021)

    Article  Google Scholar 

  41. A. Casillas–Zamora, J.T. Guillen–Bonilla, A. Guillen–Bonilla, M. Rodriguez–Betancourtt, Y.L. Casallas–Moreno, L. Gildo–Ortiz, M.L. de la Olvera–Amador, S.A. Tomás, H. Bonilla, J. Mater. Sci.: Mater. Electron. 31, 7359–7372 (2020)

    Google Scholar 

  42. R. Carlos Michel, H.A. Martínez-Preciado, J.P. Morán-Lázaro, Sens. Actuators B Chem. 140, 149–154 (2009)

    Article  Google Scholar 

  43. H. Guillén-Bonilla, M.L. de la Olvera-Amador, Y.L. Casallas-Moreno, J.T. Guillén-Bonilla, A. Guillén-Bonilla, L. Gildo-Ortiz, J.P. Morán-Lázaro, J. Santoyo-Salazar, V.M. Rodríguez-Betancourtt, J. Mater. Sci.: Mater. Electron. 30, 6166–6177 (2019)

    Google Scholar 

  44. X. Wang, Y. Li, Inorg. Chem. 45, 7522–7534 (2006)

    Article  CAS  Google Scholar 

  45. G. Bläser, T. Rühl, C. Diehl, M. Ulrich, D. Kohl, Phys. A: Stat. Mech. Appl. 266, 218–223 (1999)

    Article  Google Scholar 

  46. J.T. Guillen Bonilla, H. Guillen Bonilla, V.M. Rodríguez-Betancourtt, A. Guillen Bonilla, A. Casillas Zamora, O. Blanco Alonso, J.A. Ramírez Ortega, Sensors 2021, 11 (2021)

    Google Scholar 

  47. S. Singh, A. Singh, A. Singh, P. Tandon, RSC Adv. 10, 20349–22357 (2020)

    Article  CAS  Google Scholar 

  48. V.E. Bochenkov, G.B. Sergeev, Adv. Colloid Interface Sci. 116, 245–254 (2005)

    Article  CAS  Google Scholar 

  49. K. Arshak, E. Moore, G.M. Lyons, J. Harris, S. Clifford, Sens. Rev. 24, 181–198 (2004)

    Article  Google Scholar 

  50. A. Fioravanti, P. Marani, S. Morandi, S. Lettieri, M. Mazzocchi, M. Sacerdoti, M.C. Carotta, Sensors 21, 1331 (2021)

    Article  CAS  Google Scholar 

  51. S.C. Chang, J. Vac. Sci. Technol. 17(1), 366–369 (1979)

    Article  Google Scholar 

  52. C.C. Hsiao, L.-S. Luo, Sensors 14, 12219–12232 (2014)

    Article  CAS  Google Scholar 

  53. C.A. Smith, A. Corripio, Principles and practice of automatic process control, 2nd edn. (John Wiley & Sons Inc, Hoboken, 1997), pp.13–55

    Google Scholar 

  54. J.T. Guillen Bonilla, H. Guillen Bonilla, V.M. Rodríguez-Betancourtt, A. Casillas Zamora, J.A. Ramírez, L. Ortega, M.E. Gildo Ortiz, O. Sánchez Morales, A. Blanco Alonso, Appl. Sci. 9, 3799 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mexico’s National Council of Science and Technology (CONACyT) and the University of Guadalajara for their support. Likewise, we thank Jaime Santoyo Salazar, Maria de la Luz Olvera Amador, Jorge Alberto Ramírez Ortega, and Miguel-Ángel Luna Arias for their technical assistance This investigation was carried out following the lines of research “Nanostructured Semiconductor Oxides” of the academic group UDG-CA-895 “Nanostructured Semiconductors” of CUCEI, University of Guadalajara.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

JTGB and HGB proposed the device prototype and developed the electrical tests. AGB and ACZ synthetized the material and microscopy tests were done. All authors wrote the article.

Corresponding author

Correspondence to Héctor Guillen Bonilla.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this article.

Informed consent

Not applicable.

Institutional review board

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonilla, J.T.G., Bonilla, A.G., Zamora, A.C. et al. Zinc aluminate (ZnAl2O4) applied in the development of a propane gas sensor and in the design of a digital gas detector. J Mater Sci: Mater Electron 34, 967 (2023). https://doi.org/10.1007/s10854-023-10378-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10378-x

Navigation