Skip to main content

Advertisement

Log in

Bi0.5Na0.5TiO3-based ceramics with large energy density and high efficiency under low electric field

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Relaxor ferroelectrics with high energy storage performance are urgently expected for energy storage capacitors. In this study, a large recoverable energy density with high efficiency was achieved in Sr0.7Bi0.2TiO3 (SBT)-modified Bi0.5Na0.5TiO3 (BNT) ceramics via a conventional solid-state reaction process. The Sr2+ and Sr2+ vacancies can be simultaneously introduce into (1−x)BNT−xSBT ceramics after doping SBT, which is conducive to suppress the presence of oxygen vacancies, inhibit grain growth, facilitate the generation of dynamic polar nanoregions (PNRs) and improve the relaxation. As a result, a large recoverable energy density of 1.81 J/cm3 with prominent efficiencies of 85% under a low electric field of 130 kV/cm was achieved at x = 0.4. The results demonstrate that 0.6BNT–0.4SBT ceramic is expected to be a promising candidate for energy storage capacitor applications. This work proposes a design idea to obtain excellent energy storage properties at low electric fields in BNT-based ceramics via composition design and A-site defect engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data presented in this study are available upon request from the corresponding author.

References

  1. J. Li, F. Li, Z. Xu, S. Zhang, Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency. Adv. Mater. 30, 1802155 (2018)

    Article  Google Scholar 

  2. T.D. Zhang, H.N. Yu, Y.H. Jung, C.H. Zhang, Y. Feng, Q.G. Chen, K.J. Lee, Q.G. Chi, Significantly improved high-temperature energy storage performance of BOPP films by coating nanoscale inorganic layer. Energy Environ. Mater. 0, e12549 (2022)

    Google Scholar 

  3. T. Shao, H. Du, H. Ma, S. Qu, J. Wang. J. Wang, X. Wei, Z. Xu, Potassium-sodium niobate based lead-free ceramics: novel electrical energy storage materials. J. Mater. Chem. A 5, 554–563 (2017)

    Article  CAS  Google Scholar 

  4. Z.T. Yang, F. Gao, H.L. Du, L. Jin, L.L. Yan, Q.Y. Hu, Y. Yu, S.B. Qu, X.Y. Wei, Z. Xu, Y.J. Wang, Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties. Nano Energy 58, 768–777 (2019)

    Article  CAS  Google Scholar 

  5. F. Yan, X.F. Zhou, X. He, H.R. Bai, S.H. Wu, B. Shen, J.W. Zhai, Superior energy storage properties and excellent stability achieved in environment-friendly ferroelectrics via composition design strategy. Nano Energy 75, 2211–2855 (2020)

    Article  Google Scholar 

  6. W.P. Cao, W.L. Li, T.R.G.L. Bai, Y. Yu, T.D. Zhang, Y.F. Hou, Y. Feng, W.D. Fei, Enhanced electrical properties in lead-free NBT-BT ceramics by series ST substitution. Ceram. Int. 42, 8438–8444 (2016)

    Article  CAS  Google Scholar 

  7. L. Chen, F.X. Long, H. Qi, H. Liu, S.Q. Deng, J. Chen, Outstanding energy storage performance in high-hardness (Bi0.5K0.5)TiO3-based lead-free relaxors via multi-scale synergistic design. Adv. Funct. Mater. 32, 2110478 (2021)

    Article  Google Scholar 

  8. P. Zhao, Z.X. Fang, X.C. Zhang, J.J. Chen, Y.D. Shen, X. Zhang, Q. An, C.T. Yang, X.S. Gao, S.R. Zhang, B. Tang, Aliovalent doping engineering for A-and B-sites with multiple regulatory mechanisms: a strategy to improve energy storage properties of Sr0.7Bi0.2TiO3–based lead-free relaxor ferroelectric ceramics. ACS Appl. Mater. Interfaces 13, 24833–24855 (2021)

    Article  CAS  Google Scholar 

  9. T.D. Zhang, C. Yin, C.H. Zhang, Y. Feng, W.L. Li, Q.G. Chi, Q.G. Chen, W.D. Fei, Self-polarization and energy storage performance in antiferroelectric-insulator multilayer thin films. Compos. Part B: Eng. 221(15), 109027 (2021)

    Article  CAS  Google Scholar 

  10. B. Luo, X. Wang, E. Tian, H. Song, H. Wang, L. Li, Enhanced energy-storage density and high efficiency of lead-free CaTiO3-BiScO3 linear dielectric ceramics. ACS Appl. Mater. Interfaces 9, 19963–19972 (2017)

    Article  CAS  Google Scholar 

  11. P. Fan, S.T. Zhang, J. Xu, J. Zang, C. Samart, T. Zhang, H. Tan, D. Salamon, H. Zhang, G. Liu, Relaxor/antiferroelectric composites: a solution to achieve high energy storage performance in lead-free dielectric ceramics. J. Mater. Chem. C 8, 5681–5691 (2020)

    Article  CAS  Google Scholar 

  12. H. Qi, R. Zuo, A. Xie, A. Tian, J. Fu, Y. Zhang, S. Zhang, Ultrahigh energy-storage density in NaNbO3-based lead-free relaxor antiferroelectric ceramics with nanoscale domains. Adv. Funct. Mater. 29, 11–17 (2019)

    Article  Google Scholar 

  13. H. Wang, Y. Liu, T. Yang, S. Zhang, Ultrahigh energy-storage density in antiferroelectric ceramics with field-induced multiphase transitions. Adv. Funct. Mater. 29, 1–9 (2019)

    CAS  Google Scholar 

  14. S. Li, T.F. Hu, H.C. Nie, Z.Q. Fu, C.H. Xu, F.F. Xu, G.S. Wang, X.L. Dong, Giant energy density and high efficiency achieved in silver niobate-based lead-free antiferroelectric ceramic capacitors via domain engineering. Energy Storage Mater. 34, 417–426 (2021)

    Article  Google Scholar 

  15. B. Qu, H. Du, Z. Yang, Lead-free relaxor ferroelectric ceramics with high optical transparency and energy storage ability. J. Mater. Chem. C 4, 1795–1803 (2016)

    Article  CAS  Google Scholar 

  16. P. Zhao, H. Wang, L. Wu, L. Chen, Z. Cai, L. Li, X. Wang, High-performance relaxor ferroelectric materials for energy storage applications. Adv. Energy Mater. 9, 1803048 (2019)

    Article  Google Scholar 

  17. F. Li, S. Zhang, D. Damjanovic, L. Chen, T.R. Shrout, Local structural heterogeneity and electromechanical responses of ferroelectrics: learning from relaxor ferroelectrics. Adv. Funct. Mater. 28, 1801504 (2018)

    Article  Google Scholar 

  18. Q. Yuan, F. Yao, Y. Wang, R. Ma, H. Wang, Relaxor ferroelectric 0.9BaTiO3–0.1Bi (Zn0.5Zr0.5)O3 ceramic capacitors with high energy density and temperature stable energy storage properties. J. Mater. Chem. C 5, 9552–9558 (2017)

    Article  CAS  Google Scholar 

  19. Z.G. Liu, Z.H. Tang, S.C. Hu, D.J. Yao, F. Sun, D.Y. Chen, X.B. Guo, Q.X. Liu, Y.P. Jiang, X.G. Tang, Excellent energy storage density and efficiency in lead-free Sm-doped BaTiO3–Bi(Mg0.5Ti0.5)O3 ceramics. J. Mater. Chem. C 8, 13405–13414 (2020)

    Article  CAS  Google Scholar 

  20. Q. Hu, Y. Tian, Q. Zhu, J. Bian, D. Hongliang, D. Alikin, V. Shur, Y. Feng, Z. Xu, X. Wei, Achieve ultrahigh energy storage performance in BaTiO3–Bi(Mg1/2Ti1/2)O3 relaxor ferroelectric ceramics via nano-scale polarization mismatch and reconstruction. Nano Energy 67, 104264 (2019)

    Article  Google Scholar 

  21. H. Qi, A.W. Xie, A. Tian, R.Z. Zuo, Superior energy-storage capacitors with simultaneously giant energy density and efficiency using nanodomain engineered BiFeO3–BaTiO3–NaNbO3 lead-free bulk ferroelectrics. Adv. Energy Mater. 10, 1903338 (2020)

    Article  CAS  Google Scholar 

  22. D.W. Wang, Z.M. Fan, D. Zhou, A. Khesro, S. Murakami, A. Feteira, Q.L. Zhao, X.L. Tan, I.M. Reaney, Bismuth ferrite-based lead-free ceramics and multilayers with high recoverable energy density. J. Mater. Chem. A 6, 4133–4144 (2018)

    Article  CAS  Google Scholar 

  23. Q. Yang, M. Zhu, Q. Wei, M. Zhang, M. Zheng, Y. Hou, Excellent energy storage performance of K0.5Bi0.5TiO3-based ferroelectric ceramics under low electric field. Chem. Eng. J. 414, 128769 (2021)

    Article  CAS  Google Scholar 

  24. W.P. Cao, W.L. Li, T.D. Zhang, J. Sheng, Y.F. Hou, Y. Feng, Y. Yu, W.D. Fei, High-energy storage density and efficiency of (1-x)[0.94NBT–0.06BT]-xST lead-free Ceramics. Energy Technol. 3, 1198–1204 (2015)

    Article  CAS  Google Scholar 

  25. C. Zhang, W.R. Xiao, F.F. Zeng, D. Su, K. Du, S.Y. Qiu, G.F. Fan, W. Lei, H.B. Zhang, S.L. Jiang, J.M. Wu, G.Z. Zhang, Superior energy-storage performance in 0.85Bi0.5Na0.5TiO3–0.15NaNbO3 lead-free ferroelectric ceramics via composition and microstructure engineering. J. Mater. Chem. A 9, 10088–10094 (2021)

    Article  CAS  Google Scholar 

  26. Z.Q. Ling, J. Ding, W.J. Miao, J.J. Liu, J.H. Zhao, L.M. Tang, Y.H. Shen, Y.Y. Chen, P. Li, Z.B. Pan, MnO2-modified lead-free NBT-based relaxor ferroelectric ceramics with improved energy storage performances. Ceram. Int. 47, 22065–22072 (2021)

    Article  CAS  Google Scholar 

  27. W.P. Cao, W.L. Li, X.F. Dai, T.D. Zhang, J. Sheng, Y.F. Hou, W.D. Fei, Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics. J. Eur. Ceram. Soc. 36, 593–600 (2016)

    Article  CAS  Google Scholar 

  28. R. Kang, Z. Wang, X. Lou, W. Liu, P. Shi, X. Zhu, X. Guo, S. Li, H. Sun, L. Zhang, Q. Sun, Energy storage performance of Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics with superior temperature stability under low electric fields. Chem. Eng. J. 410, 128376 (2021)

    Article  CAS  Google Scholar 

  29. Y. Huang, Q. Guo, H. Hao, H. Liu, S. Zhang, Tailoring properties of (Bi0.51Na0.47)TiO3 based dielectrics for energy storage applications. J. Eur. Ceram. Soc. 39, 4752–4760 (2019)

    Article  CAS  Google Scholar 

  30. T.T. Ruan, J. Yuan, J. Xu, Y.F. Liu, Y.N. Lyu, Enhanced large field-induced strain and energy storage properties of Sr0.6La0.2Ba0.1TiO3-modified Bi0.5Na0.5TiO3 relaxor ceramics. J. Mater. Sci.: Mater. Electron. 33, 15779–15790 (2022)

    CAS  Google Scholar 

  31. H. Qi, R. Zuo, Linear-like lead-free relaxor antiferroelectric Bi0.5Na0.5TiO3–NaNbO3 with giant energy-storage density/efficiency and super stabilityagainst temperature and frequency. J. Mater. Chem. A 7, 3971–3978 (2019)

    Article  CAS  Google Scholar 

  32. P. Shi, L. Zhu, W. Gao, Z. Yu, X. Lou, X. Wang, Z. Yang, S. Yang, Large energy storage properties of lead-free (1-x)(0.72Bi0.5Na0.5TiO3–0.28SrTiO3)-xBiAlO3 ceramics at broad temperature range. J. Alloys Compd. 784, 788–793 (2019)

    Article  CAS  Google Scholar 

  33. L. Zhang, Y.P. Pu, M. Chen, Influence of BaZrO3 additive on the energy-storage properties of 0.775Na0.5Bi0.5TiO3–0.225BaSnO3 relaxor ferroelectrics. J. Alloys Compd. 775, 342–347 (2019)

    Article  CAS  Google Scholar 

  34. Y. Wu, Y. Fan, N. Liu, P. Peng, M. Zhou, S. Yan, F. Cao, X. Dong, G. Wang, Enhanced energy storage properties in sodium bismuth titanate-based ceramics for dielectric capacitor applications. J. Mater. Chem. C 7, 6222–6230 (2019)

    Article  CAS  Google Scholar 

  35. D. Li, D. Zhou, W. Liu, P.J. Wang, Y. Guo, X.G. Yao, H.X. Lin, Enhanced energy storage properties achieved in Na0.5Bi0.5TiO3-based ceramics via composition design and domain engineering. Chem. Eng. J. 419, 129601 (2021)

    Article  CAS  Google Scholar 

  36. F. Yan, H. Bai, X. Zhou, G. Ge, G. Li, B. Shen, J. Zhai, Realizing superior energy storage properties in lead-free ceramics via a macro-structure design strategy. J. Mater. Chem. A 8, 11656–11664 (2020)

    Article  CAS  Google Scholar 

  37. W.P. Cao, J. Sheng, Y.L. Qiao, L. Jing, Z. Liu, J. Wang, W.L. Li, Optimized strain with small hysteresis and high energy-storage density in Mn-doped NBT-ST system. J. Eur. Ceram. Soc. 39, 4046–4052 (2019)

    Article  CAS  Google Scholar 

  38. W.P. Cao, W.L. Li, Y. Feng, T.R.G.L. Bai, Y.L. Qiao, Y.F. Hou, T.D. Zhang, Y. Yu, W.D. Fei, Defect dipole induced large recoverable strain and high energy-storage density in lead-free Na0.5Bi0.5TiO3-based systems. Appl. Phys. Lett. 108, 202902 (2016)

    Article  Google Scholar 

  39. W.B. Li, D. Zhou, L.X. Pang, Enhanced energy storage density by inducing defect dipoles in lead free relaxor ferroelectric BaTiO3-based ceramics. Appl. Phys. Lett. 110, 132902 (2017)

    Article  Google Scholar 

  40. F. Yan, K.W. Huang, T. Jiang, X.F. Zhou, Y.J. Shi, G.L. Ge, B. Shen, J.W. Zhai, Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering. Energy Storage Mater. 30, 392–400 (2020)

    Article  Google Scholar 

  41. Z.Y. Che, L. Ma, G.G. Luo, C. Xu, Z.Y. Cen, Q. Feng, X.Y. Chen, K.L. Ren, N.N. Luo, Phase structure and defect engineering in (Bi0.5Na0.5)TiO3-based relaxor antiferroelectrics toward excellent energy storage performance. Nano Energy 100, 107484 (2022)

    Article  CAS  Google Scholar 

  42. W.P. Cao, W.L. Li, Q.R. Lin, D. Xu, High energy storage density and large strain with ultra-low hysteresis in Mn-doped 0.65Bi0.5Na0.5TiO3–0.35SrTiO3 ceramics. J. Mater. Sci.: Mater. Electron. 32, 17645–17654 (2021)

    CAS  Google Scholar 

  43. X.S. Qiao, D. Wu, F.D. Zhang, M.S. Niu, B. Chen, X.M. Zhao, P.F. Liang, L.L. Wei, X.L. Chao, Z.P. Yang, Enhanced energy density and thermal stability in relaxor ferroelectric Bi0.5Na0.5TiO3–Sr0.7Bi0.2TiO3 ceramics. J. Eur. Ceram. Soc. 39, 4778–4784 (2019)

    Article  CAS  Google Scholar 

  44. X.Y. Zhao, W.F. Bai, Y.Q. Ding, L.J. Wang, S.T. Wu, P. Zheng, P. Li, J.W. Zhai, Tailoring high energy density with superior stability under low electric field in novel (Bi0.5Na0.5)TiO3-based relaxor ferroelectric ceramics. J. Eur. Ceram. Soc. 40, 4475–4486 (2020)

    Article  CAS  Google Scholar 

  45. D. You, H. Tan, Z.L. Yan, H.Y. Gao, S.G. Chen, W.G. Ma, P.Y. Fan, N.M.A. Tran, Y. Liu, D. Salamon, H.B. Zhang, Enhanced dielectric energy storage performance of 0.45Na0.5Bi0.5TiO3–0.55Sr0.7Bi0.2TiO3/AlN0-3 type lead-free composite ceramics. ACS Appl. Mater. Interfaces 14, 17652–17661 (2022)

    Article  CAS  Google Scholar 

  46. M. Wang, Q. Feng, C.Y. Luo, Y.C. Lan, C.L. Yuan, N.N. Luo, C.R. Zhou, T.Y.H.S. Fujita, J.W. Xu, G.H. Chen, Y.Z. Wei, Ultrahigh energy storage density and efficiency in Bi0.5Na0.5TiO3–based ceramics via the domain and bandgap engineering. ACS Appl. Mater. Interfaces 13, 51218–51229 (2021)

    Article  CAS  Google Scholar 

  47. H.R. Ye, F. Yang, Z.B. Pan, D. Hu, X.J. Lv, H.X. Chen, F.F. Wang, J.S. Wang, P. Li, J.W. Chen, J.J. Liu, J.W. Zhai, Significantly improvement of comprehensive energy storage performances with lead-free relaxor ferroelectric ceramics for high-temperature capacitors applications. Acta Mater. 203, 116484 (2021)

    Article  CAS  Google Scholar 

  48. X.S. Qiao, D. Wu, F.D. Zhang, B. Chen, X.D. Ren, P.F. Liang, H.L. Du, X.L. Chao, Z.P. Yang, Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramic with large energy density and high efficiency under a moderate electric field. J. Mater. Chem. C 7, 10514–10520 (2019)

    Article  CAS  Google Scholar 

  49. X. Huang, H. Hao, S. Zhang, H. Liu, W. Zhang, Q. Xu, Structure and dielectric properties of BaTiO3–BiYO3 perovskite solid solutions. J. Am. Ceram. Soc. 97, 1797–1801 (2014)

    Article  CAS  Google Scholar 

  50. P. Zhao, B. Tang, Z.X. Fang, F. Si, C.T. Yang, G. Liu, S.R. Zhang, Structure, dielectric and relaxor properties of Sr0.7Bi0.2TiO3–K0.5Bi0.5TiO3 lead-free ceramics for energy storage applications. J. Materiom. 7, 195–207 (2021)

    Article  Google Scholar 

  51. T. Badapanda, S. Sarangi, B. Behera, S. Parida, S. Saha, T.P. Sinha, R. Ranjan, P.K. Sahoo, Optical and dielectric study of strontium modified barium zirconium titanate ceramic prepared by high energy ball milling. J. Alloys Compd. 645, 586–596 (2015)

    Article  CAS  Google Scholar 

  52. N. Liu, R. Liang, Z. Zhou, X. Dong, Designing lead-free bismuth ferrite-based ceramics learning from relaxor ferroelectric behavior for simultaneous high energy density and efficiency under low electric field. J. Mater. Chem. C 6, 10211–10217 (2018)

    Article  CAS  Google Scholar 

  53. Y.L. Zhang, W.L. Li, Z.Y. Wang, Y.L. Qiao, H.T. Xia, R.X. Song, Y. Zhao, W.D. Fei, Perovskite Sr1–x(Na0.5Bi0.5)xTi0.99Mn0.01O3 thin films with defect dipoles for high energy-storage and electrocaloric performance. ACS Appl. Mater. Interfaces 11, 37947–37954 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Youth Innovative Talent Support Program of Harbin University of Commerce (No. 2020CX05).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection, and analysis were performed by WP and JB. QR and JS helped to perform the analysis with constructive discussions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Cao Wenping.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, W., Tu, J., Lin, Q. et al. Bi0.5Na0.5TiO3-based ceramics with large energy density and high efficiency under low electric field. J Mater Sci: Mater Electron 34, 928 (2023). https://doi.org/10.1007/s10854-023-10363-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10363-4

Navigation