Skip to main content
Log in

Influence of Ni content on arc erosion behavior of Ag/Ni electrical contact materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Arc erosion behavior of Ag/Ni electrical contact materials with different Ni content under 50,000 operation numbers was investigated used by 3DOP, SEM and EPMA. The results indicated that the arc erosion of Ag/Ni electrical contact materials fabricated by sintering-extrusion technology was more and more serious with the Ni content increase from 10 to 20 wt %. There were arc erosion craters on anode and arc erosion convex peaks on cathode, and the arc erosion area decreased with the increase of Ni content. The micro-morphology characteristic of arc erosion was slightly different due to the different Ni content. Layer-like distribution of elements Ni and Ag was found on cathode of Ag/15Ni and Ag/20Ni, which was resulted from the difference of physical properties between Ag and Ni and the limited solubility of Ni in liquid state Ag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. C.-P. Wu, M. Yuan, Q. Wu, G.-F. Xu, X.-P. Liang, Q. Zhao, H.-Q. Liu, J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.154146

    Article  Google Scholar 

  2. D. Guzman, C. Aguilar, P. Rojas, J.M. Criado, M.J. Dianez, R. Espinoza, A. Guzman, C. Martinez, Trans. Nonferrous Met. Soc. China 29, 2 (2019). https://doi.org/10.1016/s1003-6326(19)64946-0

    Article  CAS  Google Scholar 

  3. M.-H. Hwang, H. Kong, J.-W. Jeong, H.-Y. Lee, Superlattices Microstruct. (2020). https://doi.org/10.1016/j.spmi.2020.106503

    Article  Google Scholar 

  4. M. Zhang, X.-H. Wang, X.-H. Yang, J.-T. Zou, S.-H. Liang, Trans. Nonferrous Met. Soc. China 26, 3 (2016). https://doi.org/10.1016/s1003-6326(16)64168-7

    Article  Google Scholar 

  5. P. Jiang, F. Li, Y.-P. Wang, IEEE Trans. Compon. Packaging Technol. 29, 2 (2006). https://doi.org/10.1109/tcapt.2006.875873

    Article  Google Scholar 

  6. N. Ray, B. Kempf, T. Mutzel, F. Heringhaus, L. Froyen, K. Vanmeensel, J. Vleugels, J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.02.037

    Article  Google Scholar 

  7. D. Wojcik-Grzybek, K. Frydman, P. Borkowski, Arch. Metall. Mater. 58, 4 (2013). https://doi.org/10.2478/amm-2013-0126

    Article  CAS  Google Scholar 

  8. A.-K. Li, W.-Y. Zhou, M. Xie, S. Wang, S.-B. Wang, Y.-C. Yang, Y.-T. Chen, M.-M. Liu, Diam. Relat. Mat. (2021). https://doi.org/10.1016/j.diamond.2020.108141

    Article  Google Scholar 

  9. J. Sekikawa, N. Moriyama, T. Kubono, IEICE Trans. Electron. E91C, 8 (2008). https://doi.org/10.1093/ietele/e91-c.8.1268

    Article  Google Scholar 

  10. H.-Y. Li, X.-H. Wang, Y. Xi, T. Zhu, X.-H. Guo, Vacuum (2019). https://doi.org/10.1016/j.vacuum.2019.01.003

    Article  Google Scholar 

  11. Y. Xi, X.-H. Wang, Z.-J. Zhou, H.-Y. Li, X.-H. Guo, Trans. Nonferrous Met. Soc. China 29, 5 (2019)

    Article  Google Scholar 

  12. C.-P. Wu, D.-Q. Yi, W. Weng, S.-H. Li, J.-M. Zhou, F. Zheng, Mater. Des. (2015). https://doi.org/10.1016/j.matdes.2015.06.142

    Article  Google Scholar 

  13. Y. Kim, Y. Jin, G. Yoon, I. Chung, H. Yoon, C.-Y. Yoo, S.-H. Park, J. Mater. Sci. Technol. 35, 5 (2019). https://doi.org/10.1016/j.jmst.2018.11.020

    Article  CAS  Google Scholar 

  14. Y.-Y. Lou, W.-Y. He, E. Verlato, M. Musiani, F.D. Loner, F. Fourcade, A. Amrane, C.-Y. Li, Z.-Q. Tian, O. Merdrignac-Conanec, N. Coulon, F. Geneste, J. Electroanal. Chem. (2019). https://doi.org/10.1016/j.jelechem.2019.113357

    Article  Google Scholar 

  15. J.-H. Son, Y.-H. Song, H.-K. Yu, J.-L. Lee, Appl. Phys. Lett. (2009). https://doi.org/10.1063/1.3206742

    Article  Google Scholar 

  16. V. Vykoukal, J. Bursik, P. Roupcova, D.-A. Cullen, J. Pinkas, J. Alloys Compd. 770, 1–9 (2019). https://doi.org/10.1016/j.jallcom.2018.08.082

    Article  CAS  Google Scholar 

  17. K. Yoshida, K. Sawa, K. Suzuki, M. Watanabe, IEICE Trans. Electron. E95C, 9 (2012). https://doi.org/10.1587/transele.E95.C.1531

    Article  Google Scholar 

  18. Z.-J. Lin, S.-Y. Fan, M.-M. Liu, S.-H. Liu, J.-G. Li, J.-P. Li, M. Xie, J.-L. Chen, X.-D. Sun, J. Alloys Compd. 788, 1 (2019). https://doi.org/10.1016/j.jallcom.2019.02.085

    Article  CAS  Google Scholar 

  19. H.-Y. Li, X.-H. Wang, Z.-D. Hu, X.-H. Guo, Vacuum (2020). https://doi.org/10.1016/j.vacuum.2020.109290

    Article  Google Scholar 

  20. Z.-J. Lin, S.-H. Liu, J.-G. Li, J.-L. Chen, M. Xie, X.-D. Li, M. Zhang, Q. Zhu, D. Huo, X.-D. Sun, Mater. Des. (2016). https://doi.org/10.1016/j.matdes.2016.06.123

    Article  Google Scholar 

  21. K. Yoshida, K. Sawa, K. Suzuki, M. Watanabe, IEICE Trans. Electron. E94C, 9 (2011). https://doi.org/10.1587/transele.E94.C.1395

    Article  Google Scholar 

  22. R.-Z. Huang, G.-F. Xu, Q. Wu, M. Yuan, C.-P. Wu, Trans. Nonferrous Met. Soc. China 32, 8 (2020). https://doi.org/10.1016/S1003-6326(22)65975-2

    Article  Google Scholar 

  23. Y. Kawakami, M. Hasegawa, Y. Watanabe, K. Sawa, 51st IEEE Holm Conference on Electrical Contacts. (2005) Doi: https://doi.org/10.1109/holm.2005.1518237.

  24. H.-Y. Li, X.-H. Wang, Y. Liang, Z.-D. Hu, X.-H. Guo, Vacuum 11, 2–9 (2020). https://doi.org/10.1016/j.vacuum.2020.109756

    Article  CAS  Google Scholar 

  25. Z.-B. Li, X.-X. Wu, H. Nouri, M. Hasegawa, IEICE Trans. Electron. E90C, 7 (2007). https://doi.org/10.1093/ietele/e90-c.7.1356

    Article  Google Scholar 

  26. X.-X. Wu, Z.-B. Li, 48th IEEE Holm Conference on Electrical Contacts. (2002)

Download references

Funding

This work was supported by the Hunan Provincial Natural Science Foundation of China (No. 2022JJ30739) and by the National Natural Science Foundation of China (No. 51601225). The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

All persons who have made substantial contributions to the work reported in the manuscript, including those who provided editing and writing assistance but who are not authors, are named in the Acknowledgement section of the manuscript and have given their written permission to be named. If the manuscript does not include Acknowledgement, it is because the authors have not received substantial contribution from nonauthors.

Corresponding author

Correspondence to Chunping Wu.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, R., Xu, G., Zhao, C. et al. Influence of Ni content on arc erosion behavior of Ag/Ni electrical contact materials. J Mater Sci: Mater Electron 34, 1053 (2023). https://doi.org/10.1007/s10854-023-10357-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10357-2

Navigation