Skip to main content
Log in

Adjusting the viscosity of silver nanowire ink for promoting the uniformity and conductivity of transparent electrode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we report a suitable thickening agent (cellulose nanofibril: CNF) to promote the uniformity and conductivity of silver nanowire (AgNW) transparent electrode by increasing the viscosity of AgNW ink. CNF exhibits fascinating characteristics. First, it doesn’t lower the conductivity and transmittance of film. Second, it greatly promotes the dispersity degree of AgNW in ink. Third, it doesn’t affect the ink wetting. Fourth, it increases the ink viscosity and slows the ink flow to solve the problems of disorderly ink flow and ink shrinkage. Finally, it makes the wet film dry uniformly. Hence, CNF greatly promotes the distribution uniformity of AgNW in film. As a result, with the same amount of AgNW, more conductive paths can be constructed in AgNW-CNF film to endow the film with much higher conductivity. Specifically, the sheet resistance, variation coefficient of sheet resistance, transmittance of AgNW film are 38.7 × 103 Ω/sq, 40.49%, 90.29%, while those of AgNW-CNF film are 77.5 Ω/sq, 1.59%, 91.89%. Meanwhile, although CNF doesn’t promote the adhesion force, it really greatly promotes the erasion difficulty of AgNW from the substrate. These results demonstrate that CNF and our strategy are effective. In transparent-electrode field, such suitable thickening agent is rare at present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article.

References

  1. G. Chen, Z. Wu, G. Xu, L. Chen, Y. Peng, C. Ye, Nanotechnology 32, 505510 (2021)

    Article  CAS  Google Scholar 

  2. S.Y. Kim, W.H. Shin, H.S. Kim, D.W. Jung, M.J. Kim, K. Kim, J.W. Roh, S. Hwang, J. Lee, D. Yang, H. Sohn, S.H. Kim, C. Jung, E. Cho, D.J. Yun, J. Kim, Y.J. Cho, S.I. Kim, K.H. Lee, C. Kwak, D.S. Ko, A.C.S. Appl, Mater. Inter. 13, 11396–11402 (2021)

    Article  CAS  Google Scholar 

  3. X. He, R. He, A.L. Liu, X. Chen, Z. Zhao, S. Feng, N. Chen, M. Zhang, J. Mater. Chem. C 2, 9737–9745 (2014)

    Article  CAS  Google Scholar 

  4. N. Dang-Thuan, H. Youn, A.C.S. Appl, Mater. Inter. 11, 42469–42478 (2019)

    Article  Google Scholar 

  5. K. Wang, Y. Jin, B. Qian, J. Wang, F. Xiao, J. Mater. Chem. C 8, 4372–4384 (2020)

    Article  CAS  Google Scholar 

  6. P. Wen, R. Peng, W. Song, J. Ge, X. Yin, X. Chen, C. Liu, X. Zhang, Z. Ge, Org. Electron. 94, 106172 (2021)

    Article  CAS  Google Scholar 

  7. J. Li, F. Cheng, H. Li, H. Zhang, G. Wang, D. Pan, RSC Adv. 11, 14730–14736 (2021)

    Article  CAS  Google Scholar 

  8. H. Fan, K. Li, Q. Li, C. Hou, Q. Zhang, Y. Li, W. Jin, H. Wang, J. Mater. Chem. C 5, 9778–9785 (2017)

    Article  CAS  Google Scholar 

  9. S. Yu, X. Liu, M. Wu, H. Dong, X. Wang, L. Li, ACS Appl. Mater. Inter. 13, 14483–14491 (2021)

    Google Scholar 

  10. W.H. Chae, T. Sannicolo, J.C. Grossman, ACS Appl. Mater. Inter. 12, 17921–17932 (2020)

    Article  Google Scholar 

  11. W. Zhao, S.S. Wang, C.B. Zhao, H.T. Cao, H. Zhang, A.Z. Peng, H.J. Dong, L.H. Xie, W. Huang, J. Mater. Chem. C 9, 1874–1879 (2021)

    Article  CAS  Google Scholar 

  12. G. Chen, L. Bi, Z. Yang, L. Chen, G. Wang, C. Ye, ACS Appl. Mater. Inter. 11, 22648–22654 (2019)

    Article  CAS  Google Scholar 

  13. S. Cho, S. Kang, A. Pandya, R. Shanker, Z. Khan, Y. Lee, J. Park, S.L. Craig, H. Ko, ACS Nano 11, 4346–4357 (2017)

    Article  CAS  Google Scholar 

  14. F.C. Liang, Y.W. Chang, C.C. Kuo, C.J. Cho, D.H. Jiang, F.C. Jhuang, S.P. Rwei, R. Borsali, Nanoscale 11, 1520–1530 (2019)

    Article  CAS  Google Scholar 

  15. B. Deng, P.C. Hsu, G. Chen, B.N. Chandrashekar, L. Liao, Z. Ayitimuda, J. Wu, Y. Guo, L. Lin, Y. Zhou, M. Aisijiang, Q. Xie, Y. Cui, Z. Liu, H. Peng, Nano Lett. 15, 4206–4213 (2015)

    Article  CAS  Google Scholar 

  16. H.S. Kang, J. Choi, W. Cho, H. Lee, D. Lee, D.G. Lee, H.T. Kim, J. Mater. Chem. C 4, 9834–9840 (2016)

    Article  CAS  Google Scholar 

  17. B.Y. Ahn, J.A. Lewis, Mater. Chem. Phys. 148, 686–691 (2014)

    Article  CAS  Google Scholar 

  18. X. Feng, L. Jiang, Adv. Mater. 18, 3063–3078 (2006)

    Article  CAS  Google Scholar 

  19. Y. Jia, C. Chen, D. Jia, S. Li, S. Ji, C. Ye, ACS Appl. Mater. Inter. 8, 9865–9871 (2016)

    Article  CAS  Google Scholar 

  20. W. Zhou, A. Hu, S. Bai, Y. Ma, D. Bridges, RSC Adv. 5, 39103–39109 (2015)

    Article  CAS  Google Scholar 

  21. L. Hu, H.S. Kim, J.-Y. Lee, P. Peumans, Y. Cui, ACS Nano 4, 2955–2963 (2010)

    Article  CAS  Google Scholar 

  22. H. Hu, S. Wang, S. Wang, G. Liu, T. Cao, Y. Long, Adv. Funct. Mater. 29, 1902922 (2019)

    Article  Google Scholar 

  23. B.Y. Wang, E.S. Lee, D.S. Lim, H.W. Kang, Y.J. Oh, RSC Adv. 7, 7540–7546 (2017)

    Article  CAS  Google Scholar 

  24. J. Liang, K. Tong, Q. Pei, Adv. Mater. 28, 5986–5996 (2016)

    Article  CAS  Google Scholar 

  25. H. Yang, S. Bai, X. Guo, H. Wang, Appl. Surf. Sci. 483, 888–894 (2019)

    Article  CAS  Google Scholar 

  26. S. Bai, H. Wang, H. Yang, H. Zhang, T. Chen, X. Guo, RSC Adv. 8, 13466–13473 (2018)

    Article  CAS  Google Scholar 

  27. Q. Li, S. Chen, H. Yu, J. Chen, X. Yan, L. Li, M. Xu, J. Mater. Chem. C 9, 3957–3968 (2021)

    Article  CAS  Google Scholar 

  28. S. Wu, W. Cui, N. Aghdassi, T. Song, S. Duhm, S.T. Lee, B. Sun, Adv. Funct. Mater. 26, 5035–5041 (2016)

    Article  CAS  Google Scholar 

  29. N. Kim, H. Kang, J.H. Lee, S. Kee, S.H. Lee, K. Lee, Adv. Mater. 27, 2317–2323 (2015)

    Article  CAS  Google Scholar 

  30. X. Chen, G. Xu, G. Zeng, H. Gu, H. Chen, H. Xu, H. Yao, Y. Li, J. Hou, Y. Li, Adv. Mater. 32, 1908478 (2020)

    Article  CAS  Google Scholar 

  31. Y. Bi, J. Wei, S. Chen, H. Zhao, X. Zhang, J. Phys. Chem. C 125, 24671–24684 (2021)

    Article  CAS  Google Scholar 

  32. S. Chen, Y. Guan, Y. Li, X. Yan, H. Ni, L. Li, J. Mater. Chem. C 5, 2404–2414 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (51903026), China Postdoctoral Science Foundation (2022M710502), Special Support for Chongqing Postdoctoral Science Foundation (2021XM3064), Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202101303), Natural Science Foundation of Yongchuan (2022yc-jckx20011).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SC: designed and directed the research. KZ and WX: measured the surface tension and SEM image. KY: prepared the optoelectronic device. All authors contributed to the general discussion. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Shanyong Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5032 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Zhang, K., Yang, K. et al. Adjusting the viscosity of silver nanowire ink for promoting the uniformity and conductivity of transparent electrode. J Mater Sci: Mater Electron 34, 966 (2023). https://doi.org/10.1007/s10854-023-10333-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10333-w

Navigation