Skip to main content
Log in

Silver modification improving on the conductivity of graphene/copper composite: experimental and theoretical research

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effects of silver (Ag) modified on reduced graphene oxide (rGO) to improve the conductivity of rGO/copper composite were investigated via first-principle calculations and experimental investigations. It is found that after Ag ions deposited on rGO, some floccule of Ag deposits are formed and covered on the surface of rGO. The microstructure of rGO@Ag/Cu becomes much more uniform with less defects. The conductivity and electrical contact resistance of rGO@Ag/Cu composite also is better than that of rGO/Cu without any Ag modification. Micro-mechanism shows that the Ag modification can enhance the interface bonding strength of rGO@4Ag/Cu(111) (W = − 3.3213 J/m2) from initial W = − 0.5645 J/m2 of rGO/Cu. Electronic structure illuminates the improving conductivity and electrical contact resistance of rGO@Ag/Cu composite come from the best bridge effect of Ag ions between copper and carbon atoms. Furthermore its good electrical contact resistance is originated from the much more bonding strength of Ag–C than that of Cu–C. Thus our research can give some suggestions in the modification on graphene and the development of new electrical contact materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Our datasets of the paper are presented in the main manuscript.

References

  1. D. Groppi, A. Pfeifer, D.A. Garcia, G. Krajai, N. Nui, A review on energy storage and demand side management solutions in smart energy islands. Revew. Sust. Energ. Rev. 135, 110183 (2021)

    Article  Google Scholar 

  2. L. Cui, R. Luo, L. Wang, H. Luo, C. Deng, Novel copper-impregnated carbon strip for sliding contact materials. J. Alloys Compd. 735, 1846–1853 (2018)

    Article  CAS  Google Scholar 

  3. S.P. Kumar, R. Parameshwaran, S.A. Kumar, S.N. Heenalisha, Electrical and mechanical studies on pure-silver coated aluminium based electrical contact materials. Mater. Today. Proc. 33, 3621–3625 (2020)

    Article  CAS  Google Scholar 

  4. M. Lungu, S. Gavriliu, T. Canta, M. Lucaci, E. Enescu, AgSnO2 sintered electrical contacts with ultrafine and uniformly dispersed microstructure. Adv. Mater. 8, 576–581 (2006)

    CAS  Google Scholar 

  5. X. Wang, H. Yang, M. Chen, J. Zou, S. Liang, Fabrication and arc erosion behaviors of AgTiB2 contact materials. Powder. Technol. 256, 20–24 (2014)

    Article  CAS  Google Scholar 

  6. J. Swingler, J.W. McBride, The erosion and arc characteristics of Ag/CdO and Ag/SnO2 contact materials under DC break conditions. IEEE Trans. Compon. Packag. Manuf. Technol. A 19, 404–415 (1996)

    Article  CAS  Google Scholar 

  7. T. Yang, W. Chen, F. Yan, H. Lv, Y.Q. Fu, Effect of reduced graphene oxides decorated by Ag and Ce on mechanical properties and electrical conductivity of copper matrix composites. Vacuum 183, 109861–67 (2021)

    Article  CAS  Google Scholar 

  8. Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. Chen, S. Huang, Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6, 205–211 (2012)

    Article  CAS  Google Scholar 

  9. M.M.S. Sanad, M.H. El-Sadek, Porous niobium carbide as promising anode for high performance lithium-ions batteries via cost-effective processing. Diamond Relat. Mater. 121, 108722 (2022)

    Article  CAS  Google Scholar 

  10. M. Shi, H. Zhu, C. Chen, J. Jiang, L. Zhao, C. Yan, Synergistically coupling of graphene quantum dots with Zn-intercalated MnO2 cathode for high-performance aqueous Zn-ion batteries. Int. J. Min. Met. Mater. 30, 25–32 (2023)

    Article  CAS  Google Scholar 

  11. Z. Lou, Q. Wang, W. Sun, J. Liu, H. Yan, H. Han, H. Bian, Y. Li, Regulating lignin content to obtain excellent bamboo-derived electromagnetic wave absorber with thermal stability. Chem. Eng. J. 430, 133178 (2022)

    Article  CAS  Google Scholar 

  12. Z. Lou, Q. Wang, U.I. Kara, R.S. Mamtani, X. Zhou, H. Bian, Z. Yang, Y. Li, H. Lv, S. Adera, X. Wang, Biomass derived carbon heterostructures enable environmentally adaptive wideband electromagnetic save absorbers. Nano-Micro Lett. 14, 11 (2022)

    Article  CAS  Google Scholar 

  13. H. Luo, Y. Sui, J. Qi, Q. Meng, F. Wei, Y. He, Copper matrix composites enhanced by silver/reduced graphene oxide hybrids. Mater. Lett. 196, 354–357 (2017)

    Article  CAS  Google Scholar 

  14. H. Luo, Y. Sui, J. Qi, Q. Meng, F. Wei, Y. He, Mechanical enhancement of copper matrix composites with homogeneously dispersed graphene modified by silver nanoparticles. J Alloys Compd. 729, 293–302 (2017)

    Article  CAS  Google Scholar 

  15. Y. He, S. Wang, H. Luo, C. Wang, Ag-rGO content dependence of the mechanical, conductive and anti-corrosion properties of copper matrix composites. Mater. Res. Express. 5, 096523 (2018)

    Article  Google Scholar 

  16. S. Ghadimi, S. Mazinani, A.M. Bazargan, F. Sharif, Effect of formulation and process on morphology and electrical conductivity of Ag-graphene hybrid inks. Synth. Met. 281, 116913 (2021)

    Article  CAS  Google Scholar 

  17. M. Singla, N. Jaggi, DFT analysis of hydrogen gas adsorption properties on Ag doped graphene. Mater. Today Proc. 66, 2104–2108 (2022)

    Article  CAS  Google Scholar 

  18. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Paync, First-principles simulation: ideas illustrations and the CASTEP code. J. Phys. Condens. Matter. 14, 2717–2744 (2002)

    Article  CAS  Google Scholar 

  19. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  CAS  Google Scholar 

  20. T.H. Fischer, J. Almlöf, General methods for geometry and wave function optimization. J. Phys. Chem. 96, 9768–9774 (1992)

    Article  CAS  Google Scholar 

  21. C. Bi, C. Zhang, F. Ma, L. Zhu, R. Zhu, Q. Qi, L. Liu, H. Dong, Development of 3D porous Ag+ decorated PCN-222 @ graphene oxide-chitosan foam adsorbent with antibacterial property for recovering U(VI) from seawater. Sep. Purif. Technol. 281, 119900 (2022)

    Article  CAS  Google Scholar 

  22. C. Cong, T. Yu, K. Sato, Raman characterization of ABA-and ABC-stacked trilayer graphene. ACS Nano 5, 8760–8768 (2011)

    Article  CAS  Google Scholar 

  23. A. Berner, K.C. Mundim, D.E. Ellis, S. Dorfman, D. Fuks, R. Evenhaim, Microstructure of Cu–C interface in Cu-based metal matrix composite. Sensors Actuators A Phys. 74, 86–90 (1999)

    Article  CAS  Google Scholar 

  24. L. Wang, K.C. Wei, F.L. Jia, Effect of graphene content on hardness and conductivity of copper matrix composites. Powder Metall. Ind. 31, 29–34 (2021)

    CAS  Google Scholar 

  25. U. Himmler, H. Peisl, A. Sepp, W. Waidelich, Effect of annealing on the lattice parameter of neutron-irradiated copper. Phys. Rev. Lett. 19, 956–957 (1967)

    Article  CAS  Google Scholar 

  26. S. Yan, Q. Hong, X. Chen, X. Li, W. Nan, P. Peng, Reduced graphene oxide-refined Cu matrix composites: an experimental and first-principles study. Cryst. Res. Technol. 54, 1800191 (2019)

    Article  Google Scholar 

  27. Y. Jiang, J.B. Adams, First principle calculations of benzotriazole adsorption onto clean Cu (111). Surf. Sci. 529, 428–442 (2003)

    Article  CAS  Google Scholar 

  28. Y. Tan, H.Z. Zheng, G.F. Li, L.L. Xiong, P. Peng, Cohesive mechanism of the FeCr/Ni interface: a first-principles study. Met. Mater. Int. 22, 75–80 (2016)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 520711362), the Jiangxi Provincial Natural Science Foundation (Grant No. 20202BABL204024), and the Innovation special fund project funding of Jiangxi graduate (Grant No.YC2018-S357).

Author information

Authors and Affiliations

Authors

Contributions

GL contributed to experimental and theoretical scheme and writing––original draft preparation. HL and ZD experimental validation and data curation. HW and JW experimental validation and data curation; PP did examination. All the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Guifa Li.

Ethics declarations

Conflict of interest

The authors declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Luo, H., Dong, Z. et al. Silver modification improving on the conductivity of graphene/copper composite: experimental and theoretical research. J Mater Sci: Mater Electron 34, 904 (2023). https://doi.org/10.1007/s10854-023-10328-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10328-7

Navigation