Skip to main content

Advertisement

Log in

Investigation of dielectric relaxation and ac conductivity in Au/(carbon nanosheet-PVP composite)/n-Si capacitors using impedance measurements

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The frequency and voltage dependence of complex dielectric constant \(\left({\epsilon }^{*}\right)\), electric modulus \({(M}^{*})\), tangent loss \(\left(\text{t}\text{a}\text{n}\delta \right)\), ac electrical conductivity \(\left({\sigma }_{ac}\right)\), and impedance \(\left({Z}^{*}\right)\) of the Au/(Carbon Nanosheet-PVP composite)/n-Si capacitors was investigated using the impedance spectroscopy (IS) method in wide frequency range (1 kHz–5 MHz). \({\epsilon }^{{\prime }}-V\) plot yielded two distinct peaks located at 1.0 and 2.5 V in the low-frequency region. As the value of \({M}^{{\prime }}\) increases with increasing frequency, \({M}^{{\prime }{\prime }}\) shows a peak whose position shifts toward positive voltages with increasing frequency. Such response of these parameters to frequency can be attributed to the interfacial polarization and a special distribution of interface states at Au/interlayer interface since the dipoles and interface states both have enough time to follow the ac signal easily, thus the dipoles rotate around themselves and align with the field. The plot of \(\text{ln}\left({\sigma }_{ac}\right)-\text{l}\text{n}\left(\omega \right)\) has three linear regions corresponding to low, intermediate, and high frequencies, each yielding a different slope value thus indicating a different conduction mechanism for each frequency range. It was found that the obtained value of \({\epsilon }^{{\prime }}\) is approximately five times higher than the bulk SiO2 at 1 kHz. The dielectric characterization reveals that the presence of the (Carbon Nanosheet-PVP composite) interlayer affects the electrophysical features of the fabricated device. In other words, the utilization of the abovementioned interlayer is showing a considerable improvement in the performance of the MS structure with respect to high-energy storage capacity. The use of the Carbon Nanosheet-PVP composite as an interfacial layer instead of conventional insulators has improved device performance over a wide range of frequencies and voltages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z.-M. Dang, J.-K. Yuan, S.-H. Yao, R.-J. Liao, Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater. 25, 6334–6365 (2013)

    Article  CAS  Google Scholar 

  2. M. Sadiq, M.M. Hasan Raza, A.K. Singh, S.K. Chaurasia, M. Zulfequar, A. Arya, J. Ali, Dielectric properties and ac conductivity behavior of rGO incorporated PVP-PVA blended polymer nanocomposites films. Mater. Today Proc. 49, 3164–3169 (2022)

    Article  CAS  Google Scholar 

  3. V.R. Reddy, S.K. Upadhyaya, A. Gupta, A.M. Awasthi, S. Hussain, Enhanced dielectric and ferroelectric properties of BaTiO3 ceramics prepared by microwave assisted radiant hybrid sintering. Ceram. Int. 40, 8333–8339 (2014)

    Article  CAS  Google Scholar 

  4. T.N. Zhou, X.D. Qi, Q. Fu, The preparation of the poly(vinyl alcohol)/graphene nanocomposites with low percolation threshold and high electrical conductivity by using the large-area reduced graphene oxide sheets. Express Polym. Lett. 7, 747–755 (2013)

    Article  CAS  Google Scholar 

  5. M. Sharma, S.K. Tripathi, Frequency and voltage dependence of admittance characteristics of Al/Al2O3/PVA:n-ZnSe Schottky barrier diodes. Mat. Sci. Semicon Proc. 41, 155–161 (2016)

    Article  CAS  Google Scholar 

  6. Q. Liu, X. Zhu, Z. Huo, X. He, Y. Liang, M. Xu, Electrochemical detection of dopamine in the presence of ascorbic acid using PVP/graphene modified electrodes. Talanta 97, 557–562 (2012)

    Article  CAS  Google Scholar 

  7. C. Bilkan, Y. Azizian-Kalandaragh, S. Altindal, R. Shokrani-Havigh, Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co3O4-PVA/p-Si structures. Phys. B 500, 154–160 (2016)

    Article  CAS  Google Scholar 

  8. S.M. Zhang, L. Lin, H. Deng, X. Gao, E. Bilotti, T. Peijs, Q. Zhang, Q. Fu, Synergistic effect in conductive networks constructed with carbon nanofillers in different dimensions. Express Polym. Lett. 6, 159–168 (2012)

    Article  CAS  Google Scholar 

  9. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  CAS  Google Scholar 

  10. J.Z. Kovacs, B.S. Velagala, K. Schulte, W. Bauhofer, Two percolation thresholds in carbon nanotube epoxy composites. Compos. Sci. Technol 67, 922–928 (2007)

    Article  CAS  Google Scholar 

  11. G.C. Long, C.Y. Tang, K.W. Wong, C.Z. Man, M.K. Fan, W.M. Lau, T. Xu, B. Wang, Resolving the dilemma of gaining conductivity but losing environmental friendliness in producing polystyrene/graphene composites via optimizing the matrix-filler structure. Green. Chem. 15, 821–828 (2013)

    Article  CAS  Google Scholar 

  12. O. Sevgili, On the examination of temperature-dependent possible current-conduction mechanisms of Au/(nanocarbon-PVP)/n-Si Schottky barrier diodes in wide range of voltage. J. Mater. Sci-Mater El 32, 10112–10122 (2021)

    Article  CAS  Google Scholar 

  13. Q.G. He, J. Liu, J.X. Feng, Y.Y. Wu, Y.L. Tian, G.L. Li, D.C. Chen, Sensitive voltammetric sensor for tryptophan detection by using polyvinylpyrrolidone functionalized Graphene/GCE. Nanomaterials-Basel 10, 125 (2020)

    Article  CAS  Google Scholar 

  14. C. Latha, K. Venkatachalam, Structural, vibrational, thermal, electrical properties of PVP-PVC blend NH4SCN. Polym. Bull. 74, 3123–3137 (2017)

    Article  CAS  Google Scholar 

  15. S.K.S. Basha, G.S. Sundari, K.V. Kumar, M.C. Rao, Optical and dielectric properties of PVP based composite polymer electrolyte films. Polym. Sci. Ser. A 59, 554–565 (2017)

    Article  Google Scholar 

  16. S.K.S. Basha, G.S. Sundari, K.V. Kumar, M.C. Rao, Structural and dielectric properties of PVP based composite polymer electrolyte thin films. J. Inorg. Organomet. P 27, 455–466 (2017)

    Article  CAS  Google Scholar 

  17. O. Cicek, G. Koca, S. Altindal, High dielectric performance of heterojunction structures based on spin-coated graphene-PVP thin film on silicon with gold contacts for organic electronics. Ieee T Electron Dev 69, 304–310 (2022)

    Article  CAS  Google Scholar 

  18. S. Demirezen, S.A. Yeriskin, Frequency and voltage-dependent dielectric spectroscopy characterization of Al/(Coumarin-PVA)/p-Si structures. J. Mater. Sci-Mater El 32, 25339–25349 (2021)

    Article  CAS  Google Scholar 

  19. E.E. Tanrikulu, S.A. Yeriskin, On the changes in the dielectric, electric modulus, and ac electrical-conductivity in the Al/(C(29)H(32)O17)/p-Si (MPS) structures in wide range of frequency and voltage. Phys. B 623, 413345 (2021)

    Article  Google Scholar 

  20. D.E. Yildiz, A. Kocyigit, M.O. Erdal, M. Yildirim, Dielectric characterization of Al/PCBM:ZnO/p-Si structures for wide-range frequency. B Mater. Sci. 44, 1–7 (2021)

    Article  Google Scholar 

  21. S. Altindal, A. Barkhordari, Y. Azizian-Kalandaragh, B.S. Cevrimli, H.R. Mashayekhi, Dielectric properties and negative-capacitance/dielectric in Au/n-Si structures with PVC and (PVC:Sm2O3) interlayer. Mat. Sci. Semicon. Proc. 147, 106754 (2022)

    Article  CAS  Google Scholar 

  22. A. Buyukbas-Ulusan, S.A. Yeriskin, A. Tataroglu, M. Balbasi, Y. Azizian-Kalandaragh, Dielectric, ac conductivity and electric modulus studies at MPS structure with (Cu2O-CuO)-doped PVA interfacial layer. Optoelectron. Adv. Mat. 14, 256–260 (2020)

    Google Scholar 

  23. M.M. Bulbul, Frequency and temperature dependent dielectric properties of Al/Si3N4/p-Si(100) MIS structure. Microelectron. Eng. 84, 124–128 (2007)

    Article  Google Scholar 

  24. E.H. Nicollian, J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, Wiley Classics Library ed ed (Wiley-Interscience, Hoboken, N.J, 2003)

    Google Scholar 

  25. A. Chełkowski, Dielectric Physics (Elsevier Scientific, Amsterdam, Oxford, 1980)

    Google Scholar 

  26. S. Demirezen, H.G. Cetinkaya, S. Altindal, Doping rate Interface states and polarization effects on dielectric properties, electric modulus, and AC conductivity in PCBM/NiO:ZnO/p-Si structures in wide frequency range.  Silicon-Neth (2022). https://doi.org/10.1007/s12633-021-01640-0

    Article  Google Scholar 

  27. A.M. Akbas, A. Tataroglu, S. Altindal, Y. Azizian-Kalandaragh, Frequency dependence of the dielectric properties of Au/(NG:PVP)/n-Si structures. J. Mater. Sci-Mater El 32, 7657–7670 (2021)

    Article  CAS  Google Scholar 

  28. S. Altindal, M. Ulusoy, S. Ozcelik, Y. Azizian-Kalandaragh, On the frequency-dependent complex-dielectric, complex-electric modulus and conductivity in Au/(NiS:PVP)/n-Si structures. J. Mater. Sci-Mater El 32, 20071–20081 (2021)

    Article  CAS  Google Scholar 

  29. O. Sevgili, Y. Azizian-Kalandaragh, S. Altindal, Frequency and voltage dependence of electrical and dielectric properties in metal-interfacial layer-semiconductor (MIS) type structures. Phys. B 587, 412122 (2020)

    Article  CAS  Google Scholar 

  30. H.N. Chandrakala, B. Ramaraj, G.M. Shivakumaraiah, Madhu, Siddaramaiah, The influence of zinc oxide-cerium oxide nanoparticles on the structural characteristics and electrical properties of polyvinyl alcohol films. J. Mater. Sci. 47, 8076–8084 (2012)

    Article  CAS  Google Scholar 

  31. E.H. Nicollian, J.R. Brews, J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982)

    Google Scholar 

  32. Y. Safak-Asar, T. Asar, S. Altindal, S. Ozcelik, Investigation of dielectric relaxation and ac electrical conductivity using impedance spectroscopy method in (AuZn)/TiO2/p-GaAs(110) schottky barrier diodes. J. Alloy Compd. 628, 442–449 (2015)

    Article  CAS  Google Scholar 

  33. Y. Badali, S. Altindal, I. Uslu, Dielectric properties, electrical modulus and current transport mechanisms of Au/ZnO/n-Si structures. Prog Nat. Sci-Mater 28, 325–331 (2018)

    Article  CAS  Google Scholar 

  34. I. Tascioglu, O. Sevgili, Y. Azizian-Kalandaragh, S. Altindal, Frequency-dependent admittance analysis of Au/n-Si structure with CoSO4-PVP interfacial layer. J. Electron. Mater. 49, 3720–3727 (2020)

    Article  CAS  Google Scholar 

  35. G.A. Kontos, A.L. Soulintzis, P.K. Karahaliou, G.C. Psarras, S.N. Georga, C.A. Krontiras, M.N. Pisanias, Electrical relaxation dynamics in TiO2 - polymer matrix composites. Express Polym. Lett. 1, 781–789 (2007)

    Article  CAS  Google Scholar 

  36. A. Kaya, S. Alialy, S. Demirezen, M. Balbasi, S.A. Yeriskin, A. Aytimur, The investigation of dielectric properties and ac conductivity of Au/GO-doped PrBaCoO nanoceramic/n-Si capacitors using impedance spectroscopy method. Ceram. Int. 42, 3322–3329 (2016)

    Article  CAS  Google Scholar 

  37. Y.S. Asar, T. Asar, S. Altindal, S. Ozcelik, Dielectric spectroscopy studies and ac electrical conductivity on (AuZn)/TiO2/p-GaAs(110) MIS structures. Philos. Mag 95, 2885–2898 (2015)

    Article  Google Scholar 

  38. F. Moura, E.C. Aguiar, E. Longo, J.A. Varela, A.Z. Simoes, Dielectric properties of soft chemical method derived CaCu3Ti4O12 thin films onto Pt/TiO2/Si(100) substrates. J. Alloy Compd. 509, 3817–3821 (2011)

    Article  CAS  Google Scholar 

  39. E. Locorotondo, L. Pugi, L. Berzi, M. Pierini, S. Scavuzzo, A. Ferraris, A.G. Airale, M. Carello, Modeling and simulation of constant phase element for battery electrochemical impedance spectroscopy. IEEE 5th Int. Forum Res Technol Soc Ind (RTSI) (2019). https://doi.org/10.1109/RTSI.2019.8895597

    Article  Google Scholar 

  40. N. Borwornpornmetee, R. Chaleawpong, P. Charoenyuenyao, A. Nopparuchikun, B. Paosawatyanyong, P. Sittimart, T. Yoshitake, N. Promros, Reverse bias dependent impedance and dielectric properties of Al/n-NC FeSi2/p-Si/Pd heterostructures formed by facing-targets sputtering. Mat. Sci. Semicon Proc. 146, 106641 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Gazi University Academic Writing Application and Research Center for proofreading the article.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written with the contributions of all authors. All authors have approved the final version of the manuscript. YŞA contributed to investigation, calculations, and writing, reviewing, & editing of the manuscript, ÖS contributed to measurements and reviewing & editing of the manuscript. ŞA contributed to review & editing of the manuscript and supervising.

Corresponding author

Correspondence to Yasemin Şafak Asar.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Research data policy and data availability statements

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şafak Asar, Y., Sevgili, Ö. & Altındal, Ş. Investigation of dielectric relaxation and ac conductivity in Au/(carbon nanosheet-PVP composite)/n-Si capacitors using impedance measurements. J Mater Sci: Mater Electron 34, 893 (2023). https://doi.org/10.1007/s10854-023-10320-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10320-1

Navigation