Skip to main content
Log in

Transmittance, structure and resistivity of ZnO films doped with Ga and In elements for TCO applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The transmittance, structure and electrical characteristics of ZnO crystalline films obtained by spray pyrolysis and doped with Ga and In elements have been studied. ZnO films were prepared with the permanent In content of 2.0 at% and various Ga contents of 0.5–3.0 at%. The thermal treatment at 400 °C was applied for the crystallization and oxidation of the films. The XRD patterns of studied films demonstrate the crystalline structure of wurtzite and high transmittance of 85–90%. The non-monotonic variation of the surface morphology, the grain sizes, and the residual stresses versus the variation of the Ga content has been revealed. Using for doping the atoms with larger (In) and smaller (Ga) ionic radii compared to Zn ions allows obtaining the ZnO lattice parameters in doped films much closer to the bulk stochiometric ZnO parameters and reduced residual stresses. The latter allows increasing the donor concentrations and reaching the smallest electrical resistivity of 6.0 × 10−4 Ω cm in ZnO:In:Ga films. The results presented have shown that doping with two elements (Ga and In) allows to significantly improve the transmission in the visible spectral range and the electrical conductivity of ZnO films, which are important for the application of ZnO films as transparent conductive oxides in optoelectronic devices. Furthermore, the reduced stress and minimized distortion of the ZnO crystal lattice with high donor doping have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The experimental results are available upon reasonable request from the corresponding author.

References

  1. J. Wienke, B. van der Zanden, M. Tijssen, Sol. Energy Mater. Sol. Cells 92, 884 (2008)

    Article  CAS  Google Scholar 

  2. M.A. Lucio-Lopez, M.A. Luna-Arias, A. Maldonado, M.L. Olvera, D.R. Acosta, Sol. Energy Mater. Sol. Cells 90, 733 (2006)

    Article  CAS  Google Scholar 

  3. S. Edinger, N. Bansal, M. Bauch, R.A. Wibowo, G. Ujvari, R. Hamid, G. Trimmel, T. Dimopoulos, J Mater Sci. 52, 8591 (2017)

    Article  CAS  Google Scholar 

  4. E. Klaus, K. Andreas, R. Bernd (eds.), Transparent Conductive Zinc Oxide. (Springer, New York, 2008)

    Google Scholar 

  5. D.C. Look, G.C. Farlow, P. Reunchan, S. Limpijumnong, S.B. Zhang, Phys. Rev. Lett. 95, 255502 (2005)

    Article  Google Scholar 

  6. G.A. Shi, M. Saboktakin, M. Stavola, Appl. Phys. Lett. 85, 5601 (2004)

    Article  CAS  Google Scholar 

  7. X. Wen, Y. Han, Ch. Yao, K. Zhang, J.W. Sun, Q. Li, M. Zhang, J.-D. Wu, Opt. Mater. 77, 67 (2018)

    Article  CAS  Google Scholar 

  8. T.V. Torchynska, B. El Filali, J.L. Casas Espinola, C.I. Ballardo Rodriguez, G. Polupan, L. Shcherbyna, MRS Adv. 5, 3015 (2020)

    Article  CAS  Google Scholar 

  9. F. Chaabouni, B. Khalfallah, M. Abaab, Thin Solid Films 617, 95 (2016)

    Article  CAS  Google Scholar 

  10. S. Alamdaria, M. Jafar Tafreshia, M. Sasani Ghamsari, Mater. Lett. 197, 94 (2017)

    Article  Google Scholar 

  11. T.V. Torchynska, B. El Filali, C.I. Ballardo Rodriguez, G. Polupan, L. Shcherbyna, J. Vac. Sci. Technol. B 38, 012210 (2020)

    Article  CAS  Google Scholar 

  12. S. Mridha, D. Basak, J. Phys. D. 40, 6902 (2007)

    Article  CAS  Google Scholar 

  13. Ch. Yu, R. Li, T. Li, H. Dong, W. Jia, Superlat. Microstr. 120, 298 (2018)

    Article  CAS  Google Scholar 

  14. J.Y. Noh, H. Kim, Y.S. Kim, C.H. Park, J. Appl. Phys. 113, 153703 (2013)

    Article  Google Scholar 

  15. D.C. Look, K.D. Leedy, L. Vines, B.G. Svensson, A. Zubiaga, Phys. Rev. B 84, 115202 (2011)

    Article  Google Scholar 

  16. D.B. Potter, M.J. Powell, I.P. Parkin, C.J. Carmalt, J. Mater. Chem. C 6, 588 (2018)

    Article  CAS  Google Scholar 

  17. A.T. Thanh Pham, H.K. Thi Ta, Y. Liu, M. Aminzare, D.P. Wong, T.H. Nguyen, N.K. Pham, T.B. Nguyen, T. Seetawan, H. Ju, S. Cho, K.H. Chen, V.C. Tran, T.B. Phan, J. Alloys Compod. 747, 156 (2018)

    Article  Google Scholar 

  18. M. Shaheera, K.G. Girua, M. Kaur, V. Geetha, A.K. Debnath, R.K. Vatsa, K.P. Muthe, S.C. Gadkar, Bull. Mater. Sci. 42, 266 (2019)

    Article  Google Scholar 

  19. E.T. Seid, F.B. Dejene, Mater. Today Commun. 27, 102330 (2021)

    Article  CAS  Google Scholar 

  20. D. Mahesh, M.C. Santhosh-Kumar, Superl. Microstr. 142, 106511 (2020)

    Article  CAS  Google Scholar 

  21. N. Saxena, R. Sharma, A. Hussain, R.J. Choudhary, A.K. Debnath, O.P. Sinha, R. Krishna, Mater. Lett. 306, 130886 (2022)

    Article  CAS  Google Scholar 

  22. J.G. Um, J. Jang, Appl. Phys. Lett. 112, 162104 (2018)

    Article  Google Scholar 

  23. R.D. Shannon, Acta Cryst. Sect. A 32, 751 (1976)

    Article  Google Scholar 

  24. H. Morkoç, Ü. Ozgür, Zinc Oxide Fundamentals, Materials and Device Technology (WILEY-VCH Verlag GmbH & Co. KgaA, Weinheim, 2009)

    Book  Google Scholar 

  25. S. Maniv, W.D. Westwood, E. Colombini, J. Vac. Sci. Technol. 20, 162 (1982)

    Article  CAS  Google Scholar 

  26. J.G. Lu, Z.Z. Ye, Y.J. Zeng, L.P. Zhu, L. Wang, B.H. Zhao, J. Appl. Phys. 100, 073714 (2006)

    Article  Google Scholar 

  27. A.A. Ziabari, S.M. Rozati, Phys. B 407, 4512 (2012)

    Article  Google Scholar 

  28. T.V. Torchynska, B. El Filali, G. Polupan, Phys. E 113, 137 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful for the financial support of CONACYT Mexico (p. 258224) and SIP-IPN (p. 20231163 and 20221057) Mexico.

Funding

The financial support of CONACYT Mexico (p. 258224) and SIP-IPN (p. 20231163 and 20221057) Mexico was obtained.

Author information

Authors and Affiliations

Authors

Contributions

B.El F. and J.D. designed and performed SEM and XRD experiments, analyzed, and discussed the data. T.T. developed the concept, analyzed, and discussed the data, wrote the manuscript text, gave technical, administration and financial supports from the resources of CONACYT and SIP-IPN projects. I.Ch.B.R. designed and performed transmittance experiments, analyzed, and discussed the data. G.P. designed and performed electrical resistivity measurements, analyzed, and discussed the data, wrote the manuscript text.

Corresponding author

Correspondence to G. Polupan.

Ethics declarations

Conflict of interest

The authors have not a conflict of interests, which could affect their objectivity.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Filali, B., Torchynska, T., Ballardo Rodríguez, I.C. et al. Transmittance, structure and resistivity of ZnO films doped with Ga and In elements for TCO applications. J Mater Sci: Mater Electron 34, 983 (2023). https://doi.org/10.1007/s10854-023-10313-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10313-0

Navigation