Skip to main content
Log in

Role of Ca2+ doping on the structure, magnetic, and magnetocaloric properties of La0.75Gd0.05Sr0.2−xCaxMnO3 (x = 0, 0.05, 0.075, and 0.10) perovskite manganites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, La0.75Gd0.05Sr0.2-xCaxMnO3 perovskite manganites were synthesized by the sol-gel method, and the effects of Ca2+ (x = 0, 0.05, 0.075, and 0.10) doping on the structural, magnetic, and magnetocaloric properties of the samples were investigated. All the samples exhibited a rhombic structure with R-3c space group symmetry; however, the incorporation of calcium ions leads to an increase in the Mn–O bond length and a reduction in the Mn-O-Mn bond angle, which weakens the double exchange effect and lowers the Curie temperature of the sample. For all the samples, it was demonstrated that the types of ferromagnetic–paramagnetic were second-order magnetic phase transitions. The magnetic entropy changes of the samples were also found to be positively correlated with the amount of Ca2+ doping, indicating that this group of samples is a suitable candidate for room-temperature magnetic refrigeration materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. J.Y. Law, V. Franco, P. Keblinski, R.V. Ramanujan, Appl. Therm. Eng. 52, 17–23 (2013)

    Article  CAS  Google Scholar 

  2. I. Rasta, I. Susila, I. Subagia, Technology application of environmental friendly refrigeration (green refrigeration) on cold storage for fishery industry, in: Journal of Physics: Conference Series, IOP Publishing, 2018, pp. 012077

  3. V. Franco, J.S. Blazquez, J.J. Ipus, J.Y. Law, L.M. Moreno-Ramirez, A. Conde, Prog. Mater. Sci. 93, 112–232 (2018)

    Article  Google Scholar 

  4. J. Meyers, S. Chumbley, W. Choe, G.J. Miller, Phys. Rev. B 66, 54436 (2002)

    Article  Google Scholar 

  5. B. Podmiljsak, I. Skulj, B. Markoli, K.Z. Rozman, P.J. McGuiness, S. Kobe, J. Magn. Magn. Mater. 321, 300–304 (2009)

    Article  CAS  Google Scholar 

  6. Y. Zhang, J. Zhu, S. Li, Z. Zhang, J. Wang, Z. Ren, Sci. China-Mater. 65, 1345–1352 (2022)

    Article  CAS  Google Scholar 

  7. A. Barman, S. Kar-Narayan, D. Mukherjee, Adv. Mater. Interfaces (2019). https://doi.org/10.1002/admi.201900291

    Article  Google Scholar 

  8. Z.-J. Mo, Z.-H. Hao, J.-Z. Deng, J. Shen, L. Li, J.-F. Wu, F.-X. Hu, J.-R. Sun, B.-G. Shen, J. Alloys Compd. 694, 235–240 (2017)

    Article  CAS  Google Scholar 

  9. Z. Xie, Z. Zou, B. He, L. Liu, Z. Mao, Front. Mater. (2021). https://doi.org/10.3389/fmats.2021.771941

    Article  Google Scholar 

  10. Z. Xie, Z. Zou, X. Jiang, W. Zhang, B. He, X. Han, Z. Mao, Phys. B: Condens. Matter 639, 413985 (2022)

    Article  CAS  Google Scholar 

  11. P. Zhang, H.-G. Piao, Y.-D. Zhang, J.-H. Huang, Acta Physica Sinica, 70 (2021)

  12. S. Choura-Maatar, R. M’Nassri, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, E.K. Hlil, RSC Adv. 7, 50347–50357 (2017)

    Article  CAS  Google Scholar 

  13. C. Hao, B. Zhao, Y. Huang, G. Kuang, Y. Sun, J. Alloys Compd. 509, 5877–5881 (2011)

    Article  CAS  Google Scholar 

  14. G. Kadim, R. Masrour, A. Jabar, E.K. Hlil, Phys A: Stat. Mech. Appl. 573, 125936 (2021)

    Article  CAS  Google Scholar 

  15. T. Raoufi, M.H. Ehsani, D.S. Khoshnoud, J. Alloys Compd. 689, 865–873 (2016)

    Article  CAS  Google Scholar 

  16. U. Shankar, A.K. Singh, J. Phys. Chem. C 119, 28620–28630 (2015)

    Article  CAS  Google Scholar 

  17. A. Tekgül, C.G. Ünlü, K. Sarlar, I. Kucuk, J. Mater. Sci.: Mater. Electron 31, 6875–6882 (2020)

    Google Scholar 

  18. Z. Xie, W. Zhang, Z. Zou, X. Jiang, J. Magn. Magn. Mater. 563, 170014 (2022)

    Article  CAS  Google Scholar 

  19. P.W. Anderson, H. Hasegawa, Phys. Rev. 100, 675 (1955)

    Article  CAS  Google Scholar 

  20. C. Zener, Phys. Rev. 81, 440 (1951)

    Article  CAS  Google Scholar 

  21. A. Elghoul, A. Krichene, N.C. Boudjada, W. Boujelben, Ceram. Int. 44, 12723–12730 (2018)

    Article  CAS  Google Scholar 

  22. I. Sfifir, A. Ezaami, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, J. Alloys Compd. 696, 760–767 (2017)

    Article  CAS  Google Scholar 

  23. L. Xu, L. Chen, J. Fan, K. Bärner, L. Zhang, Y. Zhu, L. Pi, Y. Zhang, D. Shi, Ceram. Int. 42, 8234–8239 (2016)

    Article  CAS  Google Scholar 

  24. M. Zarifi, P. Kameli, M. Mansouri, H. Ahmadvand, H. Salamati, Solid State Commun. 262, 20–28 (2017)

    Article  CAS  Google Scholar 

  25. M. Jeddi, H. Gharsallah, M. Bekri, E. Dhahri, E.K. Hlil, J. Low Temp. Phys. 198, 135–144 (2020)

    Article  CAS  Google Scholar 

  26. K. Laajimi, F. Ayadi, M. Kchaw, I. Fourati, M. Khlifi, M. Gazzah, J. Dhahri, J. Juraszek, Solid State Sci. 119, 106683 (2021)

    Article  CAS  Google Scholar 

  27. M.-H. Phan, S.-C. Yu, N.H. Hur, Appl. Phys. Lett. 86, 072504 (2005)

    Article  Google Scholar 

  28. V.M. Goldschmidt, Naturwissenschaften 14, 477–485 (1926)

    Article  CAS  Google Scholar 

  29. U. Holzwarth, N. Gibson, Nat. Nanotechnol. 6, 534–534 (2011)

    Article  CAS  Google Scholar 

  30. A. Elghoul, A. Krichene, N. Chniba Boudjada, W. Boujelben, Ceram. Int. 44, 12723–12730 (2018)

    Article  CAS  Google Scholar 

  31. M. Medarde, J. Mesot, P. Lacorre, S. Rosenkranz, P. Fischer, K. Gobrecht, Phys. Rev. B 52, 9248–9258 (1995)

    Article  CAS  Google Scholar 

  32. J. Dec, W. Kleemann, Solid State Commun. 106, 695–699 (1998)

    Article  CAS  Google Scholar 

  33. E. Miyai, F.J. Ohkawa, Phys. B: Condens. Matter. 281, 851–852 (2000)

    Article  Google Scholar 

  34. S.A. Bouzid, A. Essoumhi, A.M. Rostas, A.C. Kuncser, C.C. Negrila, N. Iacob, A. Galatanu, B. Popescu, M. Sajieddine, A.C. Galca, Ceram. Int. 48, 16845–16860 (2022)

    Article  Google Scholar 

  35. A. Guedri, S. Mnefgui, S. Hcini, E. Hlil, A. Dhahri, J. Solid State Chem. 297, 122046 (2021)

    Article  CAS  Google Scholar 

  36. B. Banerjee, Phys. Lett. 12, 16–17 (1964)

    Article  Google Scholar 

  37. M. Földeàki, R. Chahine, T. Bose, J. Appl. Phys. 77, 3528–3537 (1995)

    Article  Google Scholar 

  38. V. Franco, A. Conde, Int. J. Refrigeration-Revue Int. Du Froid 33, 465–473 (2010)

    Article  CAS  Google Scholar 

  39. K.A. Gschneidner, V.K. Pecharsky, Annu. Rev. Mater. Sci. 30, 387–429 (2000)

    Article  CAS  Google Scholar 

  40. X. Jin, Y. Lu, Y. Sun, H. Wu, X. Sun, F. Cao, H. Chen, B. Xu, J. Zhao, J. Low Temp. Phys. 195, 403–418 (2019)

    Article  CAS  Google Scholar 

  41. A. Rostamnejadi, M. Venkatesan, P. Kameli, H. Salamati, J.M.D. Coey, J. Magn. Magn. Mater. 323, 2214–2218 (2011)

    Article  CAS  Google Scholar 

  42. F. Cao, H. Chen, Z. Xie, Y. Lu, J. Zhao, X. Jin, Chin. J. Phys. 65, 424–435 (2020)

    Article  CAS  Google Scholar 

  43. S. Vadnala, S. Asthana, J. Magn. Magn. Mater. 446, 68–79 (2018)

    Article  CAS  Google Scholar 

  44. A. Dhahri, M. Jemmali, E. Dhahri, M.A. Valente, J. Alloys Compd. 638, 221–227 (2015)

    Article  CAS  Google Scholar 

  45. S.Y. Dan’kov, A.M. Tishin, V.K. Pecharsky, K.A. Gschneidner, Phys. Rev. B 57, 3478–3490 (1998)

    Article  Google Scholar 

  46. Z. Xie, Z. Zou, Z. Mao, X. Jiang, W. Zhang, J. Mater. Res. Technology-Jmr&T 21, 2778–2796 (2022)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Grant No. 52162038).

Author information

Authors and Affiliations

Authors

Contributions

WZ contributed to conceptualization, data curation, and writing—original draft. BH contributed to data curation, conceptualization, and writing—original draft. ZZ contributed to funding acquisition and writing—review & editing. ZX, XJ, CX, and MF contributed to formal analysis. ZM contributed to supervision.

Corresponding author

Correspondence to Zhengguang Zou.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., He, B., Zou, Z. et al. Role of Ca2+ doping on the structure, magnetic, and magnetocaloric properties of La0.75Gd0.05Sr0.2−xCaxMnO3 (x = 0, 0.05, 0.075, and 0.10) perovskite manganites. J Mater Sci: Mater Electron 34, 911 (2023). https://doi.org/10.1007/s10854-023-10311-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10311-2

Navigation