Skip to main content
Log in

Influence of B-site zr ion substitution on the structural, dielectric and ferroelectric properties in Bi0.5Na0.5TiO3-based lead-free ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Study of the B-site Zr4+ ions substitution in Bi0.5Na0.5Ti1−xZrxO3 (0.0 ≤ x ≤ 0.075) ceramics obtained by the solid-state reaction method is presented. All the ceramics shows single-phase rhombohedral structure (with R3c space group) that is confirmed by the room temperature X-ray diffraction (XRD) data. A very small amount of extra phase of Bi2Ti2O7 is seen in all the samples. An apparent shift is noted in Bragg positions towards the higher 2θ side for B-site Zr4+ ion substituted BNTZO (7.5%) ceramic. The Raman scattering measurement determines even Raman-active modes. The dielectric constant (ε′) and loss (tanδ) for all the ceramics are obtained at room temperature that shows nonlinear behaviour with increasing Zr4+ ion concentration. The maximum value of (ε′) ~ 2883 is observed at low frequency for BNTZO 7.5% ceramic. The room temperature ac conductivity is observed to increase with rise in frequency. The electric response of impedance spectroscopy confirms the effect of grains and grain boundaries. The ferroelectric hysteresis loop illustrates the ferroelectric properties and leakage current for all ceramics due to the conducting nature of samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. S. Nomura, K. Uchino, R.E. Newnham, L.E. CROSS, S.J. JANG, Large electrostrictive effects in relaxor ferroelectrics. Ferroelectrics 23, 187–191 (1980). https://doi.org/10.1080/00150198008018801

    Article  Google Scholar 

  2. J. Carter, E. Aksel, T. Iamsasri, J.S. Forrester, J. Chen, J.L. Jones, Structure and ferroelectricity of nonstoichiometric (na0.5Bi0.5)TiO3. Appl. Phys. Lett. 104, 0–4 (2014). https://doi.org/10.1063/1.4868109

    Article  CAS  Google Scholar 

  3. A. Nesterović, J. Vukmirović, I. Stijepović, M. Milanović, B. Bajac, E. Tóth, Ž Cvejić, V.V. Srdić, Structure and dielectric properties of (1−x)Bi0.5na0.5TiO3xBaTiO3 piezoceramics prepared using hydrothermally synthesized powders. R. Soc. Open Sci. (2021). https://doi.org/10.1098/rsos.202365

    Article  Google Scholar 

  4. S. Patel, A. Chauhan, S. Kundu, N.A. Madhar, B. Ilahi, R. Vaish, K.B.R. Varma, Tuning of dielectric, pyroelectric and ferroelectric properties of 0.715Bi0.5Na0.5TiO3−0.065BaTiO3−0.22SrTiO3 ceramic by internal clamping. AIP Adv. 5, 0–17 (2015). https://doi.org/10.1063/1.4929328

    Article  CAS  Google Scholar 

  5. S. Supriya, A review on lead-free-Bi0.5Na0.5TiO3 based ceramics and films: dielectric, piezoelectric, ferroelectric and energy storage performance. J. Inorg. Organomet. Polym. Mater. (2022). https://doi.org/10.1007/s10904-022-02418-6

    Article  Google Scholar 

  6. S. Patel, P. Saxena, P. Choudhary, A. Yadav, V.N. Rai, A. Mishra, Effect of Li + Ion substitution on structural and dielectric properties of Bi0.5Na0.5xLixTiO3 nanoceramics. J. Inorg. Organomet. Polym. Mater. 31, 851–864 (2021). https://doi.org/10.1007/s10904-020-01818-w

    Article  CAS  Google Scholar 

  7. M. Munir, A. Hussain, J.-Y. Ock, J.-H. Son, S.A. Khan, D.-S. Bae, Structure analysis and ferroelectric response of Bi0.5na0.5TiO3 nanopowder synthesized by sol–gel method. J. Nanosci. Nanotechnol. 19, 1323–1329 (2018). https://doi.org/10.1166/jnn.2019.16170

    Article  CAS  Google Scholar 

  8. J.E. Camargo, R. Parra, L.A. Ramajo, M.S. Castro, Synthesis and characterization of Bi0.5(Na0.8K0.2)0.5TiO3-based ceramics obtained through the sol–gel method. Ferroelectrics 545, 62–69 (2019). https://doi.org/10.1080/00150193.2019.1621712

    Article  CAS  Google Scholar 

  9. K. deep Kaur, A. Gautam, N. Shakti, P. Uniyal, Structural, dielectric, impedance and modulus studies of lead-free (1−x)Bi0.5Na0.5TiO3xBaTiO3(x = 0,0.06,0.08)-based ceramics. J. Mater. Sci. Mater. Electron. 33, 12281–12294 (2022). https://doi.org/10.1007/s10854-022-08187-9

    Article  CAS  Google Scholar 

  10. D.S. Yin, Z.H. Zhao, Y.J. Dai, Z. Zhao, X.W. Zhang, S.H. Wang, Electrical properties and relaxor phase evolution of Li-modified BNT-BKT-BT lead-free ceramics. J. Am. Ceram. Soc. 99, 2354–2360 (2016). https://doi.org/10.1111/jace.14247

    Article  CAS  Google Scholar 

  11. H.Y. Tian, Y. Wang, J. Miao, H.L.W. Chan, C.L. Choy, Preparation and characterization of hafnium doped barium titanate ceramics. J. Alloys Compd. 431, 197–202 (2007). https://doi.org/10.1016/j.jallcom.2006.05.037

    Article  CAS  Google Scholar 

  12. A. Hussain, C.W. Ahn, A. Ullah, J.S. Lee, I.W. Kim, Effects of hafnium substitution on dielectric and electromechanical properties of lead-free Bi0.5(Na0.78K0.22)0.5(Ti1−xHfx)O3 ceramics. Jpn. J. Appl. Phys. 49, 0415041–0415045 (2010). https://doi.org/10.1143/JJAP.49.041504

    Article  CAS  Google Scholar 

  13. C. Wang, X. Lou, T. Xia, S. Tian, The dielectric, strain and energy storage density of BNT-BKHxT1−x piezoelectric ceramics. Ceram. Int. 43, 9253–9258 (2017). https://doi.org/10.1016/j.ceramint.2017.04.081

    Article  CAS  Google Scholar 

  14. L.K. Pradhan, R. Pandey, S. Kumar, S. Kumari, M. Kar, Evidence of compositional fluctuation induced relaxor antiferroelectric to antiferroelectric ordering in Bi0.5na0.5TiO3−Bi0.5K0.5TiO3 based lead free ferroelectric. J. Mater. Sci. Mater. Electron. 30, 9547–9557 (2019). https://doi.org/10.1007/s10854-019-01288-y

    Article  CAS  Google Scholar 

  15. J.J. Serralta-Macías, F. Calderón-Piñar, O. García Zaldivar, D. Olguín, J.M. Yáñez-Limón, Structural, ferroelectric, pyroelectric, and dielectric study of Bi0.5Na0.5TiO3 ceramics synthesized with precursors obtained by the sol–gel method and doped with lanthanum. AIP Adv. 11, 0–11 (2021). https://doi.org/10.1063/5.0051792

    Article  CAS  Google Scholar 

  16. S. Lee, R.D. Levi, W. Qu, S.C. Lee, C.A. Randall, Band-gap nonlinearity in perovskite structured solid solutions. J. Appl. Phys. (2010). https://doi.org/10.1063/1.3291102

    Article  Google Scholar 

  17. J.R. Sun, G.H. Rao, J.K. Liang, Crystal structure and electronic transport property of perovskite manganese oxides with a fixed tolerance factor. Appl. Phys. Lett. 70, 1900–1902 (1997). https://doi.org/10.1063/1.118725

    Article  CAS  Google Scholar 

  18. Z. Li, M. Yang, J.S. Park, S.H. Wei, J.J. Berry, K. Zhu, Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28, 284–292 (2016). https://doi.org/10.1021/acs.chemmater.5b04107

    Article  CAS  Google Scholar 

  19. M.K. Niranjan, T. Karthik, S. Asthana, J. Pan, U.V. Waghmare, Theoretical and experimental investigation of Raman modes, ferroelectric and dielectric properties of relaxor Na0.5Bi0.5TiO3. J. Appl. Phys. 113, 0–7 (2013). https://doi.org/10.1063/1.4804940

    Article  CAS  Google Scholar 

  20. I.G. Siny, E. Husson, J.M. Beny, S.G. Lushnikov, E.A. Rogacheva, P.P. Syrnikov, Raman scattering in the relaxor-type ferroelectric Na1/2Bi1/2TiO3. Ferroelectrics 248, 57–78 (2000). https://doi.org/10.1080/00150190008223669

    Article  CAS  Google Scholar 

  21. A. Paul Blessington Selvadurai, V. Pazhnivelu, B.K. Vasanth, C. Jagadeeshwaran, R. Murugaraj, Investigation of structural and optical spectroscopy of 5% pr doped (Bi0.5Na0.5) TiO3 ferroelectric ceramics: site depended study. J. Mater. Sci. Mater. Electron. 26, 7655–7665 (2015). https://doi.org/10.1007/s10854-015-3405-5

    Article  CAS  Google Scholar 

  22. F.F. Guo, B. Yang, S.T. Zhang, X. Liu, L.M. Zheng, Z. Wang, F.M. Wu, D.L. Wang, W.W. Cao, Morphotropic phase boundary and electric properties in (1−x)Bi0.5Na0.5TiO3xBiCoO3 lead-free piezoelectric ceramics. J. Appl. Phys. 111, 0–5 (2012). https://doi.org/10.1063/1.4730770

    Article  CAS  Google Scholar 

  23. L. Wu, Y. Yang, S. Zhu, B. Shen, Q. Hu, J. Chen, Y. Yang, Y. Xia, J. Yin, Z. Liu, Large electromechanical strain and electrostrictive effect in (1−x)(Bi0.5Na0.5TiO3−SrTiO3)−xLiNbO3 ternary lead-free piezoelectric ceramics. J. Mater. Sci. Mater. Electron. 30, 200–211 (2019). https://doi.org/10.1007/s10854-018-0282-8

    Article  CAS  Google Scholar 

  24. N.D. Quan, V.N. Hung, N. Van Quyet, H.V. Chung, D.D. Dung, Band gap modification and ferroelectric properties of Bi0.5(na,K)0.5TiO3-based by Li substitution. AIP Adv. 4, 3–10 (2014). https://doi.org/10.1063/1.4863092

    Article  CAS  Google Scholar 

  25. T. Zheng, J. Wu, D. Xiao, J. Zhu, Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater. Sci. 98, 552–624 (2018). https://doi.org/10.1016/j.pmatsci.2018.06.002

    Article  CAS  Google Scholar 

  26. K. Parmar, N.S. Negi, Influence of Na/Bi excess on structural, dielectric and multiferroic properties of lead free (Na0.5Bi0.5)0.99La0.01Ti0.988Fe0.012O3ceramic. J. Alloys Compd. 618, 781–787 (2015). https://doi.org/10.1016/j.jallcom.2014.07.138

    Article  CAS  Google Scholar 

  27. M. Badole, S. Dwivedi, H.N. Vasavan, S. Saxena, V. Srihari, S. Kumar, Improved dielectric and relaxor behavior in LaScO3-doped K0.5Bi0.5TiO3 ceramics. J. Mater. Sci. Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-09262-x

    Article  Google Scholar 

  28. Hend Kacem et al., Enhanced electrocaloric effect, energy storage density and pyroelectric response from a domain-engineered lead-free BaTi0.91Sn0.08Zr0.01O3 ferroelectric ceramic. RSC Adv. 12(47), 30771–30784 (2022). https://doi.org/10.1039/d2ra04914g

    Article  CAS  Google Scholar 

  29. R. Wu, L. Huang, L. Jin, R. Gao, L. Bai, Z. Xu, Microstructure, dielectric and ferroelectric properties of (1−x)Bi0.5Na0.5TiO3−x(0.8Ba0.9Sr0.1TiO3−0.2BiFeO3) lead-free ceramics. J. Mater. Sci. Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-09246-x

    Article  Google Scholar 

  30. S. Bisen, M. Khan, A. Mishra, Tailoring effect of large polaron hopping in the conduction mechanism of Ca-modified BaTiO3 system. J. Mater. Sci. Mater. Electron. 31, 9212–9223 (2020). https://doi.org/10.1007/s10854-020-03452-1

    Article  CAS  Google Scholar 

  31. P. Saxena, P.C.A. Yadav, B.D.V.N. Rai, Improved structural and dielectric properties of cd and Ti dual doped ZnO nanoparticles. Appl. Phys. A 126, 1–11 (2020). https://doi.org/10.1007/s00339-020-03943-2

    Article  CAS  Google Scholar 

  32. J. Suchanicz, D. Sitko, Š Svirskas, M. Ivanov, A. Kežionis, J. Banys, P. Czaja, V. Kruzina, J. Szczęsny, Ferroelectric, dielectric and optic properties of Mn and Cr-doped na0.5Bi0.5TiO3 single crystals. Ferroelectrics 532, 38–49 (2019). https://doi.org/10.1080/00150193.2018.1499402

    Article  CAS  Google Scholar 

  33. C.C. Jin, F.F. Wang, L.L. Wei, J. Tang, Y. Li, Q.R. Yao, C.Y. Tian, W.Z. Shi, Influence of B-site complex-ion substitution on the structure and electrical properties in Bi0.5na0.5TiO3-based lead-free solid solutions. J. Alloys Compd. 585, 185–191 (2014). https://doi.org/10.1016/j.jallcom.2013.09.152

    Article  CAS  Google Scholar 

  34. W. Liu, X. Ma, S. Ren, X. Lei, L. Liu, Tunable phase transition in (Bi0.5Na0.5)0.94Ba0.06TiO3 by B-site cations. Appl. Phys. A Mater. Sci. Process. 126, 1–10 (2020). https://doi.org/10.1007/s00339-020-3448-1

    Article  CAS  Google Scholar 

  35. Q. Xu, H. Liu, L. Zhang, J. Xie, H. Hao, M. Cao, Z. Yao, M.T. Lanagan, Structure and electrical properties of lead-free Bi0.5Na0.5TiO3-based ceramics for energy-storage applications. RSC Adv. 6, 59280–59291 (2016). https://doi.org/10.1039/c6ra11744a

    Article  CAS  Google Scholar 

  36. K.S. Rao, K.C.V. Rajulu, B. Tilak, A. Swathi, Effect of Ba2+ in BNT ceramics on dielectric and conductivity properties. Nat. Sci. 02, 357–367 (2010). https://doi.org/10.4236/ns.2010.24043

    Article  CAS  Google Scholar 

  37. S. Hajra, N. Pradhani, R.N.P. Choudhary, S. Sahoo, Fabrication, dielectric and electrical characteristics of 0.94(Bi0.5Na0.5)TiO3−0.06BaTiO3 ceramics. Process. Appl. Ceram. 13, 24–31 (2019). https://doi.org/10.2298/PAC1901024H

    Article  CAS  Google Scholar 

  38. S. Hajra, S. Sahoo, M. De, P.K. Rout, H.S. Tewari, R.N.P. Choudhary, Structural and electrical characteristics of barium modified bismuth-sodium titanate (Bi0.49Na0.49Ba0.02)TiO3. J. Mater. Sci. Mater. Electron. 29, 1463–1472 (2018). https://doi.org/10.1007/s10854-017-8054-4

    Article  CAS  Google Scholar 

  39. A.K. Roy, K. Prasad, A. Prasad, Electrical conduction in (Na0.5Bi0.5)1−x BaxTiO3 (0 ≤ x ≤ 1) ceramic by complex impedance/modulus spectroscopy. ISRN Ceram. 2013, 1–12 (2013). https://doi.org/10.1155/2013/369670

    Article  CAS  Google Scholar 

  40. M. Rawat, K.L. Yadav, A. Kumar, P.K. Patel, N. Adhlakha, J. Rani, Structural, dielectric and conductivity properties of Ba2+ doped (Bi0.5Na0.5)TiO3 ceramic. Adv. Mater. Lett. 3, 286–292 (2012). https://doi.org/10.5185/amlett.2012.2322

    Article  CAS  Google Scholar 

  41. N. Pradhani, P. K. Mahapatra, and R. N. P. Choudhary, J. Inorg. Organomet. Polym. Mater. 31, 591 (2021).

    Article  CAS  Google Scholar 

  42. Z. Liu, Microstructure and electric characteristics of Na0.5−xLa0.5+xCu3Ti4O12 ceramics prepared by sol–gel method. Ferroelectrics 537, 133–150 (2018). https://doi.org/10.1080/00150193.2018.1528951

    Article  CAS  Google Scholar 

  43. K. Kumari, A. Prasad, K. Prasad, Dielectric, impedance/modulus and conductivity studies lead-free ceramics. Am. J. Mater. Sci. 6, 1–18 (2016). https://doi.org/10.5923/j.materials.20160601.01

    Article  CAS  Google Scholar 

  44. A. Hussain, J.S. Lee, C.W. Ahn, J.S. Kim, A. Ullah, I.W. Kim, Impedance spectroscopy of lead-free Bi0.5(Na0.78K0.22)0.5TiO3−(Na0.5K0.5)NbO3 piezoelectric ceramics. J. Korean Phys. Soc. 57, 1106–1110 (2010). https://doi.org/10.3938/jkps.57.1106

    Article  CAS  Google Scholar 

  45. S.K. Barik, R.N.P. Choudhary, P.K. Mahapatra, Impedance spectroscopy study of Na1/2Sm1/2TiO3 ceramic. Appl. Phys. A Mater. Sci. Process. 88, 217–222 (2007). https://doi.org/10.1007/s00339-007-3990-0

    Article  CAS  Google Scholar 

  46. A. Prasad, R.K. Mishra, K.P. Chandra, K. Prasad, Structure and electrical properties of ((Bi, Na)0.94Ba0.06Ti1−x(Mg1/3Nb2/3)xO3 ceramics. Process. Appl. Ceram. 12(4), 383–393 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

UGC-DAE-CSR, as an institute, is acknowledged for extending its facilities. The authors acknowledge Dr. M. Gupta, Dr. V. R. Reddy and V. G. Sathe of UGC-DAE CSR, Indore for their fruitful discussions. Thanks to Mr. Layanta Behera provided technical assistance.

Funding

This work has not been funded by any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the concept and design of this study. SP: contributed to sample preparation, designed the figures, performed the analysis, and drafted the final manuscript. JS processed the experimental data and wrote the first draft of the manuscript. Dr. VNR did the formal analysis and reviews the manuscript. AM supervised the findings of this work. All authors discussed the results and approved the final manuscript.

Corresponding author

Correspondence to Susheel Patel.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The authors declare that all data in this paper are original and have not been published in any other journal. This paper did not involve unethical treatment of animals.

Consent for participate

All authors have provided consent to participate.

Consent for publication

All authors have read the manuscript provided for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, S., Shukla, J., Rai, V.N. et al. Influence of B-site zr ion substitution on the structural, dielectric and ferroelectric properties in Bi0.5Na0.5TiO3-based lead-free ceramics. J Mater Sci: Mater Electron 34, 889 (2023). https://doi.org/10.1007/s10854-023-10308-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10308-x

Navigation