Skip to main content

Advertisement

Log in

Improved dielectric, ferroelectric and energy storage properties of (Sr0.55Bi0.3)(Ni1/3Nb2/3)O3 modified NaNbO3 ceramics via phase modulation and relaxation enhancement

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Antiferroelectric NaNbO3 ceramics are potential candidates for pulsed power applications, but their energy efficiency and energy densities are low owing to the irreversible transition of NaNbO3 from antiferroelectric to electric field-induced ferroelectric phases. (Sr0.55Bi0.3)(Ni1/3Nb2/3)O3 was doped into NaNbO3 ceramics to modify their dielectric and ferroelectric properties for improvement of the energy-storage properties of NaNbO3 ceramics. When the doping content is small, the electric field for induction of phase transition was delayed due to the decreased tolerant factor of modified NaNbO3 ceramics. When the doping content was between 10 and 15 mol%, a structural phase transition from orthorhombic to tetragonal occurred in NaNbO3-based ceramics. Thus, the synthesized paraelectric phase effectively decreased the polarization hysteresis and increased the dielectric constant at room temperature, which benefits better energy-storage performances. Besides, local lattice stress resulting from the effect of multiple-element doping reduced domain sizes and promoted domain reversibility to improve energy efficiency. Consequently, recoverable energy storage of 0.818 J/cm3 and energy efficiency of 85.3% were achieved in 0.85NaNbO3–0.15(Sr0.55Bi0.3)(Ni1/3Nb2/3)O3 ceramics under 160 kV/cm. Consequently, this study offers a feasible approach to improve the application of NaNbO3 in the field of energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data is available on request from the authors. (The data that support the findings of this study are available from the corresponding author upon reasonable request.) OriginPro 2019b was used to draw line and column graphs, and Photoshop CC was used to combine graphs.

References

  1. J. Shi, X. Chen, C. Sun et al., Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.07.050

    Article  Google Scholar 

  2. He. Qi, R. Zuo, A. Xie et al., Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201903877

    Article  Google Scholar 

  3. C. Zhu, Z. Cai, L. Guo et al., Appl. Energy Mater. (2022). https://doi.org/10.1021/acsaem.1c02964

    Article  Google Scholar 

  4. Z. Li, D.-X. Li, Z.-Y. Shen et al., J. Adv. Ceram. (2022). https://doi.org/10.1007/s40145-021-0532-8

    Article  Google Scholar 

  5. P. Chen, W. Cao, T. Li et al., Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2022.135065

    Article  Google Scholar 

  6. R. Kang, Z. Wang, W. Yang et al., J. Mater. Chem. A (2021). https://doi.org/10.1039/D1TA06848B

    Article  Google Scholar 

  7. D. Li, S. Zong-Yang, Z. Li et al., J. Mater. Chem. (2020). https://doi.org/10.1039/d0tc01699c

    Article  Google Scholar 

  8. Xu. Xiaoyan Dong, H.C. Li et al., J. Adv. Ceram. (2022). https://doi.org/10.1007/s40145-022-0566-6

    Article  Google Scholar 

  9. D. Li, X. Zeng, Z. Li et al., J. Adv. Ceram. (2021). https://doi.org/10.1007/s40145-021-0500-3

    Article  Google Scholar 

  10. H. Ma, M.A. Ismael, Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2022.07.229

    Article  Google Scholar 

  11. H. Chen, H. Chen, L. Gao et al., Ferroelectrics (2022). https://doi.org/10.1080/00150193.2022.2061229

    Article  Google Scholar 

  12. L. Chen, J. Zhou, Xu. Lizhi et al., Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2022.137367

    Article  Google Scholar 

  13. Y. Luo, B. Han, Fu. Zhengqian et al., J. Am. Ceram. Soc. (2022). https://doi.org/10.1111/jace.18664

    Article  Google Scholar 

  14. Lu. Zhilun, W. Bao, Ge. Wang et al., Nano Energy (2021). https://doi.org/10.1016/j.nanoen.2020.105423

    Article  Google Scholar 

  15. J. Liu, P. Li, C. Li et al., Acs Appl. Mater. Inter. (2022). https://doi.org/10.1021/acsami.2c01507

    Article  Google Scholar 

  16. D. Yang, J. Gao, Li. Shu et al., J. Mater. Chem. A (2020). https://doi.org/10.1039/D0TA08345C

    Article  Google Scholar 

  17. L. Zhang, Z. Yan, T. Chen et al., J. Mater. Chem. C (2021). https://doi.org/10.1039/D0TC05969B

    Article  Google Scholar 

  18. J. Ma, Y. Lin, H. Yang et al., J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.159206

    Article  Google Scholar 

  19. A. Xie, Fu. Jian, R. Zuo, J. Mater. (2021). https://doi.org/10.1016/j.jmat.2021.11.012

    Article  Google Scholar 

  20. X. Zhu, P. Shi, Y. Gao et al., Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2022.135462

    Article  Google Scholar 

  21. Xu. Zequan, Z. Liu, K. Dai et al., J. Mater. Chem. A (2022). https://doi.org/10.1039/d2ta01808j

    Article  Google Scholar 

  22. Z. Hong, X. Ke, D. Wang et al., Acta Mater. (2022). https://doi.org/10.1016/j.actamat.2021.117558

    Article  Google Scholar 

  23. J. Toulouse, Ferroelectrics (2008). https://doi.org/10.1080/08838150802378160

    Article  Google Scholar 

  24. Xu. Xiaoyan Dong, X.C. Li et al., Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2020.09.144

    Article  Google Scholar 

  25. N.W. Grimes, R.W. Grimes, J. Phys. (1998). https://doi.org/10.1088/0953-8984/10/13/019

    Article  Google Scholar 

  26. X. Zhu, Y. Gao, P. Shi et al., Nano. Energy (2022). https://doi.org/10.1016/j.nanoen.2022.107276

    Article  Google Scholar 

  27. D. Li, Z.-Y. Shen, Z. Li et al., J. Adv. Ceram. (2020). https://doi.org/10.1007/s40145-020-0358-9

    Article  Google Scholar 

  28. B.H. Toby, R.B. Von Dreele, J. Appl. Crystallogr. (2013). https://doi.org/10.1107/S0021889813003531

    Article  Google Scholar 

  29. M.I. Chen, S. Zhan, Q. Yuan et al., Mater. Today Energy (2023). https://doi.org/10.1016/j.mtener.2022.101193

    Article  Google Scholar 

  30. Z. Jiang, Y. Yuana, H. Yang et al., J. Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2022.164345

    Article  Google Scholar 

  31. Y. Chen, Y. Wang, D. Zhao et al., Mater. Chem. Phys. (2022). https://doi.org/10.1016/j.matchemphys.2022.126542

    Article  Google Scholar 

  32. N. Thongdee, N. Triamnak, S. Prasertpalichat, Integr. Ferroelectr. (2022). https://doi.org/10.1080/10584587.2022.2054060

    Article  Google Scholar 

  33. He. Qi, R. Zuo, A. Xie et al., J. Eur. Ceram. Soc. (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.05.043

    Article  Google Scholar 

  34. B. Tai, Y. Jin, J. Wang et al., Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2022.02.260

    Article  Google Scholar 

  35. R.T. George, D.C. Joshi, S. Nayak et al., J. Appl. Phys. (2018). https://doi.org/10.1063/1.5013643

    Article  Google Scholar 

  36. Y. Sharma, M.C. Lee, K.C. Pitike et al., Acs Appl. Mater. Int. (2022). https://doi.org/10.1021/acsami.2c00340

    Article  Google Scholar 

  37. I.P. Raevski, L.A. Reznitchenko, M.A. Malitskaya et al., Ferroelectrics (2004). https://doi.org/10.1080/00150190490429231

    Article  Google Scholar 

  38. J. Zhang, Y. Hou, M. Zheng et al., J. Am. Ceram. Soc. (2016). https://doi.org/10.1111/jace.14100

    Article  Google Scholar 

  39. W. Li, X. Xia, J. Zeng et al., Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2019.10.098

    Article  Google Scholar 

  40. Y. Gao, X. Zhu, B. Yang et al., Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2021.133584

    Article  Google Scholar 

  41. S. Saremi, J. Kim, A. Ghosh et al., Phys. Rev Lett. (2019). https://doi.org/10.1103/PhysRevLett.123.207602

    Article  Google Scholar 

  42. J. Ma, D. Zhang, F. Ying et al., Acs Appl. Mater. Inter. (2022). https://doi.org/10.1021/acsami.2c02086

    Article  Google Scholar 

  43. L. Chen, Yu. Huifen, S. Deng et al., J. Eur. Ceram. Soc. (2023). https://doi.org/10.1016/j.jeurceramsoc.2023.01.036

    Article  Google Scholar 

  44. H. Ji, D. Wang, W. Bao et al., Energy Storage Mater. (2021). https://doi.org/10.1016/j.ensm.2021.01.023

    Article  Google Scholar 

  45. Y. Yin, Yu. Jing-Ru, Y.-C. Tang et al., J. Mater. (2021). https://doi.org/10.1016/j.jmat.2021.11.013

    Article  Google Scholar 

  46. F. Zhang, Z. Dai, W. Liu et al., J. Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2022.164577

    Article  Google Scholar 

  47. F. Zhang, Z. Dai, Y. Pan et al., Int. J. Energy Res. (2022). https://doi.org/10.1002/er.7897

    Article  Google Scholar 

  48. S. Zhou, Pu. Yongping, X. Zhao et al., J. Am. Ceram. Soc. (2022). https://doi.org/10.1111/jace.18455

    Article  Google Scholar 

  49. S.N. Borkar, P. Aggarwal, V.K. Deshpande, Curr. Appl. Phys. (2022). https://doi.org/10.1016/j.cap.2022.05.004

    Article  Google Scholar 

  50. Y. You, X. Guo, J. Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2022.165557

    Article  Google Scholar 

  51. S.P. Balmuchu, S.R.N. Kiran Mangalampalli, P. Dobbidi, Mater. Sci. Eng. (2022). https://doi.org/10.1016/j.mseb.2022.115791

    Article  Google Scholar 

  52. Qi. Shi, Ke. An, Yu. Zhengming et al., J. Mater. Sci. (2022). https://doi.org/10.1007/s10854-022-08701-z

    Article  Google Scholar 

  53. K. Zhang, P. Zheng, H. Hang, Iu. Ziang et al., Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2022.03.261

    Article  Google Scholar 

  54. Ye. Tian, P. Song, Gu. Rui et al., Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2022.07.030

    Article  Google Scholar 

  55. Yu. Jing Wang, X.F. Rao et al., Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2021.03.297

    Article  Google Scholar 

  56. J. Ai, X. Chen, L. Luo et al., Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2022.05.011

    Article  Google Scholar 

  57. Xu. Yonghao, Z. Yang, Xu. Kun et al., J. Alloys Compd. (2022). https://doi.org/10.1016/j.ceramint.2022.04.348

    Article  Google Scholar 

  58. D. Feng, Du. Huiling, H. Ran et al., J. Solid State Chem. (2022). https://doi.org/10.1016/j.jssc.2022.123081

    Article  Google Scholar 

  59. Z. Chen, S. Mao, Li. Ma et al., J. Mater. (2022). https://doi.org/10.1016/j.jmat.2022.03.004

    Article  Google Scholar 

  60. G. Liu, Y. Li, B. Guo et al., Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.125625

    Article  Google Scholar 

  61. J. Liu, Y. Ding, C. Li et al., J. Mater. Chem. a (2022). https://doi.org/10.1039/d2ta08074e

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (51972114, 52272062).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by XZ and YC. The first draft of the manuscript was written by XZ and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Anze Shui or Chao He.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, X., Chen, Y., Shui, A. et al. Improved dielectric, ferroelectric and energy storage properties of (Sr0.55Bi0.3)(Ni1/3Nb2/3)O3 modified NaNbO3 ceramics via phase modulation and relaxation enhancement. J Mater Sci: Mater Electron 34, 1002 (2023). https://doi.org/10.1007/s10854-023-10300-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10300-5

Navigation