Skip to main content
Log in

Structural and photoluminescence study of thin GaN and AlN/GaN nanowires

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The photoluminescence (PL) of GaN and AlN/GaN nanowires (NWs) grown under by the plasma-assisted molecular beam epitaxy (PA-MBE) is presented. The structural morphology of the AlN/GaN and GaN NWs was examined using Reflection high-energy electron diffraction (REEHD), high-resolution scanning electron microscope (SEM), and X-ray diffraction (XRD) techniques. PL spectra of GaN NWs show only one dominant peak at 3.420 eV at 8 K, attributed to exciton emission close to the surface. For AlN/GaN NWs, the dominant peak is redshifted by 27 meV with respect to GaN NWs as a result of the growth of AlN NWs on top of GaN NWs. Due to the smaller unit cells of the AlN NWs grown on top of GaN NWs, a tension strain is expected to be created in the AlN lattice at the interface with GaN and results in strain-induced potential traps for excitons. In the AlN/GaN NWs spectra, additional low-energy peaks were observed at 3.15 and 3.08 related to below band-gap emissions in AlN NWs. The PL spectra of GaN and AlN/GaN NWs show the dominant peak at 3.393 eV at 300 K, which is attributed to free exciton emission in GaN. In addition, the room-temperature PL of AlN/GaN NWs show strong emission at 3.03 eV. This study shows that GaN and GaN/AlN NWs assemblies are good luminescent candidates at room temperature. The new positions of the dominant peaks as well as the observed redshift between these emission peaks by growing AlN NWs on top of GaN NWs can push LED bandgap engineering for nanotechnology applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available upon request.

References

  1. C. Rodríguez-Fernández, M. Almokhtar, W. Ibarra-Hernandez, M.M. de Lima Jr, A.H. Romero, H. Asahi, A. Cantarero, Nano Lett. 18, 5091 (2018)

    Article  Google Scholar 

  2. S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, Y. Arakawa, Nat. Mater. 5, 887 (2006)

    Article  CAS  Google Scholar 

  3. J. Li, K.B. Nam, M.L. Nakarmi, J.Y. Lin, H.X. Jiang, Appl. Phys. Lett. 81, 3365 (2002)

    Article  CAS  Google Scholar 

  4. M. Almokhtar, M. Kimura, S. Emura, and H. Asahi, in Proc. 12th Asia Pac. Phys. Conf. APPC12 Journal of the Physical Society of Japan, 2014.

  5. M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur, Properties of Advanced Semiconductor Materials: GaN AIN, InN, BN, SiC (SiGe John Wiley & Sons, New York, 2001)

    Google Scholar 

  6. K.M. Lakin, J.K. Liu, K.L. Wang, J. Vac. Sci. Technol. 13, 37 (1976)

    Article  Google Scholar 

  7. C.B. Lim, A. Ajay, C. Bougerol, J. Lähnemann, F. Donatini, J. Schörmann, E. Bellet-Amalric, D.A. Browne, M. Jiménez-Rodríguez, E. Monroy, Nanotechnology 27, 145201 (2016)

    Article  CAS  Google Scholar 

  8. M.A. Reshchikov, H. Morkoç, J. Appl. Phys. 97, 061301 (2005)

    Article  Google Scholar 

  9. M. Almokhtar, S. Emura, Y.K. Zhou, S. Hasegawa, H. Asahi, J. Phys. Condens. Matter 23, 325802 (2011)

    Article  CAS  Google Scholar 

  10. M. Almokhtar, S. Emura, Y.K. Zhou, S. Hasegawa, H. Asahi, Phys. Status Solidi C 9, 737 (2012)

    Article  CAS  Google Scholar 

  11. M. Almokhtar, S. Emura, A. Koide, T. Fujikawa, H. Asahi, J. Alloys Compd. 628, 401 (2015)

    Article  CAS  Google Scholar 

  12. T. Zhao, H. Guan, T. Zhong, B. Liu, F. Liu, L. Xing, X. Xue, J. Phys. Appl. Phys. 53, 155501 (2020)

    Article  CAS  Google Scholar 

  13. Q. Zhou, Z. Zhang, H. Li, S. Golovynskyi, X. Tang, H. Wu, J. Wang, B. Li, APL Mater. 8, 081107 (2020)

    Article  CAS  Google Scholar 

  14. F. Glas, Phys. Rev. B 74, 121302 (2006)

    Article  Google Scholar 

  15. S. Zhao, M.G. Kibria, Q. Wang, H.P.T. Nguyen, Z. Mi, Nanoscale 5, 5283 (2013)

    Article  CAS  Google Scholar 

  16. K. Tomioka, J. Motohisa, S. Hara, T. Fukui, Nano Lett. 8, 3475 (2008)

    Article  CAS  Google Scholar 

  17. G.M. Dalpian, J.R. Chelikowsky, Phys. Rev. Lett. 96, 226802 (2006)

    Article  Google Scholar 

  18. N. Grandjean, B. Damilano, S. Dalmasso, M. Leroux, M. Laügt, J. Massies, J. Appl. Phys. 86, 3714 (1999)

    Article  CAS  Google Scholar 

  19. J. Zhang, B. Jiao, J. Dai, D. Wu, Z. Wu, L. Bian, Y. Zhao, W. Yang, M. Jiang, S. Lu, Nano Energy 100, 107437 (2022)

    Article  CAS  Google Scholar 

  20. J. Jeong, Q. Wang, J. Cha, D.K. Jin, D.H. Shin, S. Kwon, B.K. Kang, J.H. Jang, W.S. Yang, Y.S. Choi, J. Yoo, J.K. Kim, C.-H. Lee, S.W. Lee, A. Zakhidov, S. Hong, M.J. Kim, Y.J. Hong, Sci. Adv. 6, eaaz5180 (2020)

    Article  CAS  Google Scholar 

  21. Z. Xing, Y. Zhao, L. Bian, J. Zhang, M. Zhou, W. Yang, Y. Wu, M. Jiang, J. Long, S. Lu, Mater. Adv. 2, 1006 (2021)

    Article  CAS  Google Scholar 

  22. Kenry, K.-T. Yong, S.F. Yu, J. Mater. Sci. 47, 5341 (2012)

    Article  CAS  Google Scholar 

  23. O. Landré, V. Fellmann, P. Jaffrennou, C. Bougerol, H. Renevier, A. Cros, B. Daudin, Appl. Phys. Lett. 96, 061912 (2010)

    Article  Google Scholar 

  24. G.R. Yazdi, P.O.Å. Persson, D. Gogova, R. Fornari, L. Hultman, M. Syväjärvi, R. Yakimova, Nanotechnology 20, 495304 (2009)

    Article  CAS  Google Scholar 

  25. J.H. He, R.S. Yang, Y.L. Chueh, L.J. Chou, L.J. Chen, Z.L. Wang, Adv. Mater. 18, 650 (2006)

    Article  CAS  Google Scholar 

  26. M. Almokhtar, N.A. All, J.Q.M. Almarashi, H. Asahi, J. Alloys Compd. 894, 162408 (2022)

    Article  CAS  Google Scholar 

  27. N. Abdel All, M. Almokhtar, J. El Ghoul, J. Mater. Sci. Mater. Electron. 31, 5033 (2020)

    Article  CAS  Google Scholar 

  28. S.K. Das, K. Binder, Phys. Rev. Lett. 107, 235702 (2011)

    Article  Google Scholar 

  29. C.M. Park, Y.S. Park, H. Im, T.W. Kang, Nanotechnology 17, 952 (2006)

    Article  CAS  Google Scholar 

  30. E. Calleja, M.A. Sánchez-García, F.J. Sánchez, F. Calle, F.B. Naranjo, E. Muñoz, U. Jahn, K. Ploog, Phys. Rev. B 62, 16826 (2000)

    Article  CAS  Google Scholar 

  31. F. Calle, F.J. Sánchez, J.M.G. Tijero, M.A. Sánchez-García, E. Calleja, R. Beresford, Semicond. Sci. Technol. 12, 1396 (1997)

    Article  CAS  Google Scholar 

  32. A. Kaschner, A. Hoffmann, C. Thomsen, Phys. Rev. B 64, 165314 (2001)

    Article  Google Scholar 

  33. M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, P. Gibart, J. Appl. Phys. 86, 3721 (1999)

    Article  CAS  Google Scholar 

  34. G. Martinez-Criado, C.R. Miskys, A. Cros, O. Ambacher, A. Cantarero, M. Stutzmann, J. Appl. Phys. 90, 5627 (2001)

    Article  CAS  Google Scholar 

  35. A. Aghdaie, H. Haratizadeh, S.H. Mousavi, S.A. Jafari Mohammadi, P.W. de Oliveira, Ceram. Int. 41, 2917 (2015)

    Article  CAS  Google Scholar 

  36. X. Wang, X. Wang, J. Song, P. Li, J.H. Ryou, R.D. Dupuis, C.J. Summers, Z.L. Wang, J. Am. Chem. Soc. 127, 7920 (2005)

    Article  CAS  Google Scholar 

  37. F. Scholz, V. Härle, F. Steuber, A. Sohmer, H. Bolay, V. Syganow, A. Dörnen, J.-S. Im, A. Hangleiter, J.-Y. Duboz, P. Galtier, E. Rosencher, O. Ambacher, D. Brunner, H. Lakner, MRS Online Proc. Libr. OPL 449, 3 (1996)

    Article  Google Scholar 

Download references

Funding

The author declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

NAbdel All contributed to the study conception and design and approved the final manuscript.

Corresponding author

Correspondence to Naglaa Abdel All.

Ethics declarations

Conflict of interest

The author declares that she has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Research involving human and animal participants

This article does not contain any involving animals and human participants performed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel All, N. Structural and photoluminescence study of thin GaN and AlN/GaN nanowires. J Mater Sci: Mater Electron 34, 881 (2023). https://doi.org/10.1007/s10854-023-10297-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10297-x

Navigation