Skip to main content
Log in

Synthesis of Zn-doped lead sulphide by electrodeposition: potential change on structural, morphological, and optical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

PbS and Zn-doped PbS materials, which have many fields of study, stand out with their applications in electro-optic technology. In this study, pure, 2%, and 4% Zn-doped PbS films annealed at 250 °C annealing temperature were produced on Indium Tin Oxide substrates by electrodeposition method. Structural, optical, and morphological properties of these produced films were examined by broad range analysis methods, and the effect of Zn element doped for various rates on the films was reported. From the structural features of the films specified by X-ray diffraction, it was concluded that all of the films were in polycrystalline structure. The thickness of the films and the parameters defining some optical properties (extinction coefficient and refractive index) were stated by spectroscopic ellipsometer. The thickness values ranged between 245 and 232 nm. According to the measurements determined by the optical method, it was found that the optical band gaps of all the films were between 1.95 eV and 2.07 eV. The transmittance values of the films at the visible wavelength (400–700 nm) were determined as low. The surface morphologies and elemental analyses of the films were obtained by Scanning Electron Microscopy and Energy-Dispersive X-ray Spectroscopy, respectively. As a result of the investigations, it was concluded that the Zn dopant had a healing effect on the structural, optical, and surface properties of the films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included within the article.

References

  1. S.M. Sze, Y. Li, K.K. Ng, Physics of Semiconductor Devices (Wiley, New York, 2021)

    Google Scholar 

  2. A.D. Pogrebnjak, L.F. Sukhodub, L. Sukhodub, O.V. Bondar, A. Turlybekuly, Advances in Thin Films, Nanostructured Materials, and Coatings (Springer, Berlin, 2019)

    Book  Google Scholar 

  3. K.M. Gupta, N. Gupta, Recent Advances in Semiconducting Materials and Devices. In Advanced Semiconducting Materials and Devices. (Springer, Cham, Springer International Publishing Switzerland, 2016), pp.531–562

    Chapter  Google Scholar 

  4. M. Eslamian, Inorganic and organic solution-processed thin film devices. Nano-micro Lett. 9(1), 1–23 (2017)

    Article  Google Scholar 

  5. A.E. Madani, O. Daoudi, S. Benyoussef, A. Qachaou, M. Fahoume, M. Lharch, Experimental and ab initio investigation of the physical properties of PbS thin films prepared by chemical bath deposition (CBD). Braz. J. Phys. 51(4), 1166–1174 (2021)

    Article  CAS  Google Scholar 

  6. A. El madani, R. Essajai, A. Qachaou, A. Raidou, M. Fahoume, M. Lharch, The temperature effect on the physical properties of PbS thin films produced by the chemical bath deposition (CBD) technique. Adv. Mater. Process. Tech. 8(3), 3413–3424 (2022)

    Google Scholar 

  7. E. Barrios-Salgado et al., Effect of deposition time on the optoelectronics properties of PbS thin films obtained by microwave-assisted chemical bath deposition. Adv. Cond. Matter. Phys. 2019, 1–8 (2019)

    Article  Google Scholar 

  8. R.M. Woo-García et al., Structure, morphology, and local photoelectrical characterization of PbS films grown by SILAR. Mater. Lett. 314, 131844 (2022)

    Article  Google Scholar 

  9. J.M.C. da Silva Filho, F.C. Marques, Structural and optical temperature-dependent properties of PbS thin films deposited by radio frequency sputtering. Mater. Sci. Semicond. Process. 91, 188–193 (2019)

    Article  Google Scholar 

  10. E. Sarica, V. Bilgin, Effect of pb: S molar ratio in precursor solution on the properties of lead sulphide thin films by ultrasonic spray pyrolysis. Mater. Sci. Semicond. Process. 71, 42–49 (2017)

    Article  CAS  Google Scholar 

  11. U. Chalapathi, S.H. Park, W.J. Choi, Chemically grown highly crystalline PbS thin films with ethylenediamine tetraacetic acid complexing agent. Mater. Sci. Semicond. Process. 134, 106022 (2021)

    Article  CAS  Google Scholar 

  12. I. Ikhioya, S. Ehika, B. Ijabor, Influence of deposition potential on lead sulphide (PbS) thin film using electrodeposition technique. Asian J. Chem. Sci. 3(4), 1–8 (2018)

    Article  Google Scholar 

  13. S. Ehika, I.L. Ikhioya, Effects of solution concentration of the optical and electrical properties of lead sulphide (PbS) semiconductor thin films deposited by electrodeposition technique. Niger Ann. Nat. Sci. 16(1), 066–075 (2017)

    Google Scholar 

  14. E. Erdoğan, M. Yilmaz, S. Aydogan, G. Turgut, Investigation of neodymium rare earth element doping in spray-coated zinc oxide thin films. J. Mater. Sci.: Mater. Electron. 32(2), 1379–1391 (2021)

    Google Scholar 

  15. K. Paulraj et al., Investigation of samarium-doped PbS thin films fabricated using nebulizer spray technique for photosensing applications. Superlattices Microstruct. 148, 106723 (2020)

    Article  CAS  Google Scholar 

  16. S.R. Rosario et al., Ag-doped PbS thin films by nebulizer spray pyrolysis for solar cells. Int. J. Energy Res. 44(6), 4505–4515 (2020)

    Article  CAS  Google Scholar 

  17. U. Chalapathi, S.H. Park, W.J. Choi, Chemically deposited Sn-doped PbS thin films for infrared photodetector applications. Appl. Phys. A 127(9), 1–6 (2021)

    Article  Google Scholar 

  18. K. Paulraj et al., Comprehensive study on nebulizer-spray-pyrolyzed Eu-Doped PbS thin films for optoelectronic applications. J. Electron. Mater. 49(9), 5439–5448 (2020)

    Article  CAS  Google Scholar 

  19. M.H. Jameel et al., A comparative study on characterizations and synthesis of pure lead sulfide (PbS) and Ag-doped PbS for photovoltaic applications. Nanotechnol. Rev. 10(1), 1484–1492 (2021)

    Article  CAS  Google Scholar 

  20. C. Sabitha, K.D.A. Kumar, S. Valanarasu, A. Saranya, I.H. Joe, Cu: ZnS and Al: ZnS thin films prepared on FTO substrate by nebulized spray pyrolysis technique. J. Mater. Sci.: Mater. Electron. 29, 4612–4623 (2018)

    CAS  Google Scholar 

  21. E. Erdoğan, X-ray line-broadening study on sputtered InGaN semiconductor with evaluation of Williamson–Hall and size–strain plot methods. Indian J. Phys. 93(10), 1313–1318 (2019)

    Article  Google Scholar 

  22. A. Monshi, M.R. Foroughi, M.R. Monshi, Modified scherrer equation to estimate more accurately nano-crystallite size using XRD. World. J. Nano Sci. Eng. 2, 154–160 (2012)

    Article  Google Scholar 

  23. L.R. Singh, M.A. Hussain, Effect of doping concentration on the optical properties of nanocrystalline Zn Doped PbS thin films deposited by CBD method. Chalcogenide Lett. 17(11), 583–591 (2020)

    Article  CAS  Google Scholar 

  24. E.A. Abiodun et al., Surface microstructure, optical and electrical properties of spray pyrolyzed PbS and Zn-PbS thin films for optoelectronic applications. Mater. Sci. -Pol. 35(3), 576–582 (2017)

    Article  Google Scholar 

  25. M.A. Hussain, L.R. Singh, S.R. Devi, Studies on structural, optical and electrical properties of Zn-Doped PbS nanocrystalline thin film. Chalcogenide Lett. 18(3), 103–111 (2021)

    Article  Google Scholar 

  26. D.A. Boyd, Sulfur and its role in modern materials science. Angew. Chem. Int. Ed. 55(50), 15486–15502 (2016)

    Article  CAS  Google Scholar 

  27. E. Erdoğan, M. Kundakçı, Changes of the physical properties of sputtered InGaN thin films under small nitrogen gas flow variations. J. Electron. Mater. 48(5), 2924–2931 (2019)

    Article  Google Scholar 

  28. E. Veena, K.V. Bangera, G.K. Shivakumar, Study on structural, optical and electrical properties of spray pyrolysed PbxZn1-xS thin films for opto-electronic applications. Optik 144, 528–538 (2017)

    Article  CAS  Google Scholar 

  29. M. Liu et al., Effect of Zn doping concentration on optical band gap of PbS thin films. J. Alloys Compd. 792, 1000–1007 (2019)

    Article  CAS  Google Scholar 

  30. A.E. Adeoye et al., Effects of Zn doping concentration on the optical and photovoltaic properties of ZnxPb1– xS thin film-based solar cell prepared by chemical spray pyrolysis. SN Appl. Sci. 2(9), 1–10 (2020)

    Article  Google Scholar 

  31. E. Erdoğan, G. Turgut, M. Yilmaz, Sol–gel spin coating derived cadmium oxide semiconductor thin films: Effect of lutetium contribution. Optik 240, 166819 (2021)

    Article  Google Scholar 

  32. S. Ravishankar, A.R. Balu, Studies on ternary PbZnS films suited for optoelectronic applications. Surf. Eng. 33(7), 506–511 (2017)

    Article  CAS  Google Scholar 

  33. E. Yücel, Y. Yücel, Fabrication and characterization of Sr-doped PbS thin films grown by CBD. Ceram. Int. 43(1), 407–413 (2017)

    Article  Google Scholar 

  34. F.G. Hone, F.B. Dejene, Synthesis and characterization of lead sulphide thin films from ethanolamine (ETA) complexing agent chemical bath. Mater. Res. Express 5(2), 026409 (2018)

    Article  Google Scholar 

  35. D.H. Yeon et al., Origin of the enhanced photovoltaic characteristics of PbS thin film solar cells processed at near room temperature. J. Mater. Chem. A 2(47), 20112–20117 (2014)

    Article  CAS  Google Scholar 

  36. A. Cantas, G. Aygun, R. Turan, Impact of incorporated oxygen quantity on optical, structural and dielectric properties of reactive magnetron sputter grown high-κ HfO2/Hf/Si thin film. Appl. Surf. Sci. 318, 199–205 (2014)

    Article  CAS  Google Scholar 

  37. A. Cantas, G. Aygun, D.K. Basa, In-situ spectroscopic ellipsometry and structural study of HfO2 thin films deposited by radio frequency magnetron sputtering. J. Appl. Phys. 116(8), 083517 (2014)

    Article  Google Scholar 

  38. A. Cantas et al., Importance of CdS buffer layer thickness on Cu2ZnSnS4-based solar cell efficiency. J. Phys. D Appl. Phys. 51(27), 275501 (2018)

    Article  Google Scholar 

  39. C. Aydin, The dispersion energy parameters, linear and nonlinear optical properties of transparent mn: ZnO nanolayers. Eur. Mech. Sci. 4(2), 82–89 (2020)

    Article  Google Scholar 

  40. L.N. Ezenwaka et al., Investigation of the optical, structural and compositional properties of electrodeposited lead manganese sulfide (PbMnS) thin films for possible device applications. Nanoarchitectonics 3(1), 18–32 (2022)

    Google Scholar 

  41. H. Zaka et al., Investigation of dispersion parameters, dielectric properties and opto–electrical parameters of ZnO thin film grown by ALD. Optik 203, 163 (2020)

    Article  CAS  Google Scholar 

  42. B. Touati, A. Gassoumi, S. Alfaify, N. Kamoun-Turki, Optical, morphological and electrical studies of Zn: PbS thin films. Mater. Sci. Semicond. Process. 34, 82–87 (2015)

    Article  CAS  Google Scholar 

  43. I.M. El Radaf, I.H.Y.S. Al-Zahrani, A.S. Hassanien, Novel synthesis, structural, linear and nonlinear optical properties of p-type kesterite nanosized Cu2MnGeS4 thin films. J. Mater. Sci.: Mater. Electron. 31(11), 8336–8348 (2020)

    CAS  Google Scholar 

  44. Y. Bchiri, N. Bouguila, M. Kraini, S. Alaya, Annealed In2S3 thin Films prepared by spray technique: report on the Structural, Optical and Dispersion Energy Parameters. Surf. Rev. Lett. 26(07), 1850223 (2019)

    Article  CAS  Google Scholar 

  45. V.V. Jadhavar, B.S. Munde, Investigation of structural, optical, and dielectric properties of Zn1-xCrxS nanoparticles for optoelectronic applications. J. Mater. Sci.: Mater. Electron. 33(30), 23867–23877 (2022)

    CAS  Google Scholar 

  46. A. Goktas, F. Aslan, A. Tumbul, S.H. Gunduz, Tuning of structural, optical and dielectric constants by various transition metal doping in ZnO: TM (TM = Mn, Co, Fe) nanostructured thin films: a comparative study. Ceram. Int. 43(1), 704–713 (2017)

    Article  CAS  Google Scholar 

  47. K. Paulraj et al., Praseodymium doped PbS thin films for optoelectronic applications prepared by nebulizer spray pyrolysis. Appl. Phys. A 126(7), 1–10 (2020)

    Article  Google Scholar 

  48. E. Erdogan, Coronene organic films: optical and spectral characteristics under annealing temperature influences. Surf. Rev. Lett. 28(09), 2150081 (2021)

    Article  CAS  Google Scholar 

  49. A.S. Hassanien, I. Sharma, Dielectric properties, optoelectrical parameters and electronic polarizability of thermally evaporated a-pb-se-ge thin films. Phys. B Condens. Matter 622, 413330 (2021)

    Article  CAS  Google Scholar 

  50. H.A.M. Ali et al., Optical and dispersion properties of thermally deposited phenol red thin films. Opt. Laser Technol. 107, 402–407 (2018)

    Article  CAS  Google Scholar 

  51. S.H. Wemple, DiDomenico behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3(4), 1338 (1971)

    Article  Google Scholar 

  52. S.H. Wemple, Refractive-index behavior of amorphous semiconductors and glasses. Phys. Rev. B 7(8), 3767 (1973)

    Article  CAS  Google Scholar 

  53. H.S. Wasly et al., Morphological, structural, and optical properties of flexible tin oxide (II) thin film via thermal evaporation technique. Eur. Phys. J. Plus 137(1), 1–10 (2022)

    Article  Google Scholar 

  54. A.S. Hassanien, A.A. Akl, Optical characterizations and refractive index dispersion parameters of annealed TiO2 thin films synthesized by RF-sputtering technique at different flow rates of the reactive oxygen gas. Phys. B Condens. Matter 576, 411718 (2020)

    Article  CAS  Google Scholar 

  55. S.S. Yahia et al., Linear and nonlinear optical discussions of nanostructured Zn-doped CdO thin films. Phys. B Condens. Matter 511, 54–60 (2017)

    Article  CAS  Google Scholar 

  56. A.M. Alsaad et al., Optical band gap and refractive index dispersion parameters of boron-doped ZnO thin films: a novel derived mathematical model from the experimental transmission spectra. Optik 211, 164641 (2020)

    Article  CAS  Google Scholar 

  57. D. Sahoo et al., Optimization of linear and nonlinear optical parameters of As40Se50Te10 thin films by thermal annealing. Opt. Laser Technol. 140, 107036 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by Bilecik Seyh Edebali University Scientific Research Coordination Unit (Project Number: 2021-01.BŞEÜ.11 − 04).

Author information

Authors and Affiliations

Authors

Contributions

EE contributed to the design and implementation of the research, to the analysis of the results, and to the writing of the manuscript. AKY aided in interpreting the results. Both authors contributed to the final version of the manuscript.

Corresponding author

Correspondence to Erman Erdoğan.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdoğan, E., Kiyak Yildirim, A. Synthesis of Zn-doped lead sulphide by electrodeposition: potential change on structural, morphological, and optical properties. J Mater Sci: Mater Electron 34, 880 (2023). https://doi.org/10.1007/s10854-023-10286-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10286-0

Navigation