Skip to main content
Log in

Tungsten oxide effects on conductivity, dielectric parameters, and density of sodium germanium borosilicate glass

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Germanium borosilicate glasses have attracted attention due to its excellent properties for technological industrial applications, and the tungsten oxide is also widely exploited in diverse technological applications for its distinctive properties. For these reasons, this work studied the effect of tungsten oxide on dielectric constants, conductivity, and density of sodium germanium borosilicate. The results show that dielectric constant (ε′) of sodium germanium borosilicate [Na2B4O7–SiO2–(Ge2O3)15-x–(WO3)x] glasses increased with increasing tungsten oxide (WO3) content and frequency but decreased with increasing temperature. Dielectric loss factor (ε) of [Na2B4O7–SiO2–Ge2O3–WO3] glasses decreased with increasing frequency but it increased with increasing temperature. Imaginary modulus (M′) of [Na2B4O7–SiO2–(Ge2O3)15-x–(WO3)x] decreased with increasing both temperature and frequency. Imaginary modulus (M″) of [Na2B4O7–SiO2–(Ge2O3)15-x–(WO3)x] increased with increasing temperature up to 400 °k then decreased. Also it increased with decreasing frequency at temperature range from 300 to 400 °k, while decreased with decreasing frequency at temperature range from 410 to 480 °k.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. A.K. Singh, D. Singh, K.S. Thind, G.S. Mudahar, Nucl. Instrum. Methods Phys. Res. Sect. B. 266(1), 140 (2008). https://doi.org/10.1016/j.nimb.2007.10.018

    Article  CAS  Google Scholar 

  2. M.H.A. Mhareb, M.A. Almessiere, M.I. Sayyed, Y.S.M. Alajerami, Optik 182, 821 (2019). https://doi.org/10.1016/j.ijleo.2019.01.111

    Article  CAS  Google Scholar 

  3. G. Lakshminarayana, A. Kumar, M.G. Dong, M.I. Sayyed, N.V. Long, M.A. Mahdi, J. Non-Cryst. Solids 481, 65 (2018). https://doi.org/10.1016/j.jnoncrysol.2017.10.027

    Article  CAS  Google Scholar 

  4. N. Singh, R. Singh, K.J. Singh, K. Sing, Glass Technol. 46(4), 311 (2005)

    CAS  Google Scholar 

  5. P. Glumglomchit, J. Rajagukguk, J. Kaewkhao, K. Kirdsiri, Key Eng. Mater. 766, 246 (2018). https://doi.org/10.4028/www.scientific.net/KEM.766.246

    Article  Google Scholar 

  6. P. Kaur, K.J. Singh, S. Thakur, A.I.P. Conf, Proc. 1953(1), 090031 (2018)

    Google Scholar 

  7. Y.S. Alajerami, D. Drabold, M. Mhareb, K.L.A. Cimatu, G. Chen, M. Kurudirek, Ceram. Int. 46(8), 12718 (2020). https://doi.org/10.1016/j.ceramint.2020.02.039

    Article  CAS  Google Scholar 

  8. P. Pascuta, L. Pop, S. Rada, M. Bosca, E. Culea, Vib. Spectrosc. 48(2), 281 (2008). https://doi.org/10.1016/j.vibspec.2008.01.011

    Article  CAS  Google Scholar 

  9. B. Zhou, H. Lin, B. Chen, E. Yue-Bun Pun, Opt. Express 19(7), 6514–6523 (2011). https://doi.org/10.1364/OE.19.006514

    Article  CAS  Google Scholar 

  10. M.T. Sebastian, Dielectric Materials for wireless communication (Elsevier, Amsterdam, 2008). https://doi.org/10.1016/B978-0-08-045330-9.X0001-5

    Book  Google Scholar 

  11. Y. Shimada, Y. Yamashita, H. Takamizawa, IEEE Transaction on Com. 11(1), 163 (1988)

    CAS  Google Scholar 

  12. A.A. Higazy, Mater. Lett. 22(5–6), 289 (1995). https://doi.org/10.1016/0167-577X(94)00254-1

    Article  CAS  Google Scholar 

  13. R. Vaish, K. Varma, J. Appl. Phys. 106(6), 064106 (2009). https://doi.org/10.1063/1.3225583

    Article  CAS  Google Scholar 

  14. H. Pengnian, H. Xihuai, G. Fuxi, J. Non-Cryst, Solids 112(1), 318 (1989). https://doi.org/10.1016/0022-3093(89)90545-0

    Article  Google Scholar 

  15. C.H. Mahmoudi, A. Hassanzadeh, M.M. Golzan, H. Sedghi, M. Talebian, Curr. Appl. Phys. (2011). https://doi.org/10.1016/J.CAP.2010.08.011

    Article  Google Scholar 

  16. B.H. Venkataraman, K.B.R. Varma, Solid State Ionics 167, 197 (2004). https://doi.org/10.1016/j.ssi.2003.12.020

    Article  CAS  Google Scholar 

  17. D. Ravinder, G.R. Mohan, P. Nitendarkishan, D.R. Sagar, Mater. Lett. 44, 256 (2000)

    Article  CAS  Google Scholar 

  18. L.E. Brus, J. Chem. Phys. 80, 4403 (1984). https://doi.org/10.1063/1.447218

    Article  CAS  Google Scholar 

  19. Y. Kayanuma, Solid State Commun. 59(6), 405 (1986). https://doi.org/10.1016/0038-1098(86)90573-9

    Article  CAS  Google Scholar 

  20. K. Shimakawa, Phil. Mag. 46, 123 (1982). https://doi.org/10.1080/13642818208246429

    Article  CAS  Google Scholar 

  21. H.A.A. Sidek, S. Rosmawati, Z.A. Talib, M.K. Halimah, W.M. Daud, J. Appl Sci. 6(8), 1489 (2009). https://doi.org/10.3844/AJASSP.2009.1489.1494

    Article  CAS  Google Scholar 

Download references

Funding

Author M. Mundher has received research support from the government grant.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analyses were performed by [MM], [AAB], [MAF], and [ABE-B]. The first draft of the manuscript was written by [MH] and [ABE-B] and all authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. Mundher.

Ethics declarations

Conflict of interest

Authors declare they have no financial interests. The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This paper meets the ethical standards of this journal.

Consent to participate

All authors agree with the review of this paper in this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mundher, M., Bendary, A.A., Farag, M.A. et al. Tungsten oxide effects on conductivity, dielectric parameters, and density of sodium germanium borosilicate glass. J Mater Sci: Mater Electron 34, 1069 (2023). https://doi.org/10.1007/s10854-023-10280-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10280-6

Navigation