Skip to main content
Log in

Single-crystal ZnO microstructures for improved triethylamine-sensing performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Triethylamine (TEA) is a common gaseous pollutant and is extremely harmful for human health. Therefore, it is crucial to construct a low-cost TEA gas sensor which can respond quickly and stably. In this work, single-crystal ZnO microstructures have been successfully synthesized by hydrothermal method. It shapes a regular hexagonal column, and it is about 4.5 μm in length and 2.9 μm in height. By scanning the SEM and TEM, the smooth prismatic side planes and tips of the podetiums have been observed. The SAED image reveal the nature of single crystal of the as-prepared ZnO microstructures. The TEA gas-sensitive properties of the sensor based on the single-crystal ZnO microstructures have been studied systematically. To 100 ppm TEA gas, the response value is 138 and the response time is about 1 s. The enhanced TEA gas sensitivity is ascribed to the regular crystal structure and nature of single crystal. The superior gas sensitivity of the as-obtained ZnO microstructures to TEA indicates that it has a bright future in the field of detection TEA in practical application by a facile, effective and low-cost hydrothermal preparation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors declare that all the data supporting the findings of this study are available within the article.

References

  1. S. Zeb, Y. Cui, H. Zhao, Y. Sui, Z. Yang, Z.U. Khan, S.M. Ahmad, M. Ikram, Y.X. Gao, X.C. Jiang, A.C.S. Appl, Mater. Inter. 14, 13836 (2022)

    Article  CAS  Google Scholar 

  2. S. Sudha, R. Ramprasath, S. Cholan, B. Gokul, S. Sridhar, H. Elhosiny Alie, M. Shkir, Inorg. Chem. Commun. 136, 109104 (2022)

    Article  CAS  Google Scholar 

  3. M. Liu, P. Song, X. Zhong, Z.X. Yang, Q. Wang, J Mater Sci: Mater Electron 31, 22713 (2020)

    CAS  Google Scholar 

  4. L.L. Meng, W.Y. Bu, Y.L. Li, Q.X. Qin, Z.J. Zhou, C.H. Hu, X.H. Chuai, C.G. Wang, P. Sun, G.Y. Lu, Sensor. Actuat. B-Chem. 342, 130018 (2021)

    Article  CAS  Google Scholar 

  5. C.B. Zhai, Z.B. Luo, X. Liang, X.Y. Song, M.Z. Zhang, J. Alloy. Compd. 857, 157545 (2021)

    Article  CAS  Google Scholar 

  6. D. Liang, P. Song, M. Liu, Q. Wang, Ceram. Int. 48, 9059 (2022)

    Article  CAS  Google Scholar 

  7. Y.Y. Shang, W.Q. Shi, R.H. Zhao, M.MMd. Ahmed, J.P. Li, J.P. Du, Chinese Chem. Lett. 31, 2055 (2020)

    Article  CAS  Google Scholar 

  8. M.X. Zhang, Z.H. Zhao, B. Hui, J.H. Sun, J.X. Sun, W.L. Tian, Z.Q. Zhang, K.W. Zhang, Y.Z. Xia, J. Hazard. Mater. 416, 126161 (2021)

    Article  CAS  Google Scholar 

  9. S.Y. Yu, J.S. Dong, H. Wang, S.R. Li, H. Zhu, T.Y. Yang, J. Mater. Chem. A 10, 25752 (2022)

    Article  CAS  Google Scholar 

  10. M.V. Nikolic, V. Milovanovic, Z.Z. Vasiljevic, Z. Stamenkovic, Sensors 20, 6694 (2020)

    Article  CAS  Google Scholar 

  11. M.H. Kim, J.S. Jang, W.T. Koo, S.J. Choi, S.J. Kim, D.H. Kim, I.D. Kim, A.C.S. Appl, Mater. Interfaces 10, 20643 (2018)

    Article  CAS  Google Scholar 

  12. P. Korapati, A.K. Kumari, Y.R. Kosuri, V.R.K.R. Dodda, J Mater Sci: Mater Electron 34, 72 (2023)

    CAS  Google Scholar 

  13. B.Y. Qi, X.C. Wang, X.Y. Wang, J.P. Cheng, Y.Y. Shang, Nanomaterials 12, 2579 (2022)

    Article  CAS  Google Scholar 

  14. S. Saini, A. Kumar, S. Ranwa, A.K. Tyagi, Appl. Phys. A 128, 454 (2022)

    Article  CAS  Google Scholar 

  15. M. Sathya, G. Selvan, K. Kasirajan, S. Usha, P. Baskaran, M. Karunakaran, J Mater Sci: Mater Electron 33, 26063 (2022)

    CAS  Google Scholar 

  16. T.Y. Yang, X.D. Yang, M.M. Zhu, H.W. Zhao, M.Z. Zhang, Inorg. Chem. Front. 7, 1918 (2020)

    Article  CAS  Google Scholar 

  17. S. Park, D. Lee, B. Kwak, H.S. Lee, S. Lee, B. Yoo, Sensor. Actuat. B-Chem. 268, 293 (2018)

    Article  CAS  Google Scholar 

  18. P.J. Cao, Q.G. Huang, S.T. Navale, M. Fang, X.K. Liu, Y.X. Zeng, W.J. Liu, F.J. Stadlerb, Y.M. Lu, Appl. Surf. Sci. 518, 146223 (2020)

    Article  CAS  Google Scholar 

  19. D.X. Wang, P.D. Xiao, K.K. Gu, X. Liang, M.Z. Zhang, Sensor. Actuat. B-Chem. 343, 130115 (2021)

    Article  CAS  Google Scholar 

  20. M. Akbari-Saatlu, M. Akbari-Saatlu, M. Procek, C. Mattsson, G. Thungström, T. Törndahl, B. Li, J. Su, W. Xiong, H.H. Radamson, A.C.S. Appl, Nano Mater. 5, 6954 (2022)

    CAS  Google Scholar 

  21. Z.Y. Ma, Y. Deng, K.Y. Luo, X.Y. Wang, Y. Qiu, L.Q. Chen, Vacuum 207, 11638 (2023)

    Google Scholar 

  22. H.X. Deng, B.J. Fang, Q.R. Zhang, X. Xiao, W. Yang, Mater. Lett. 328, 133169 (2022)

    Article  CAS  Google Scholar 

  23. Y.Z. Yang, S. Wu, Y.H. Cao, S. Li, T.F. Xie, Y.H. Lin, Z.H. Li, J. Alloy. Compd. 920, 165850 (2022)

    Article  CAS  Google Scholar 

  24. P.D. Yun, S.Y. Ma, X.L. Xu, S.Y. Wang, T. Han, H. Sheng, S.T. Pei, T.T. Yang, Mater. Lett. 285, 129162 (2021)

    Article  CAS  Google Scholar 

  25. W.H. Jiang, D.D. Wei, S.F. Zhang, X.H. Chuai, P. Sun, F.M. Liu, Y. Xu, Y. Gao, X.S. Liang, G.Y. Lu, New J. Chem. 42, 15111 (2018)

    Article  CAS  Google Scholar 

  26. W.C. Geng, Z.Y. Ma, Y.J. Zhao, X.W. He, L.B. Duan, J.C. Tu, Q.Y. Zhang, Sensor. Actuat. B-Chem. 312, 128014 (2020)

    Article  CAS  Google Scholar 

  27. Q. Ma, H. Li, S. Chu, Y. Liu, M. Liu, X. Fu, H. Li, J. Guo, ACS Sustainable Chem. Eng. 8, 5240 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China, No. 61904158.

Funding

The National Natural Science Foundation of China, No. 61904158, Qi Zhao

Author information

Authors and Affiliations

Authors

Contributions

QZ performed the important experiment and revised manuscript, ZT performed the experiment, BL and SY helped analyzed the experimental data, Z L and ZX wrote the manuscript, PL contributed to few experiments.

Corresponding author

Correspondence to Qi Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Tan, Z., Li, B. et al. Single-crystal ZnO microstructures for improved triethylamine-sensing performance. J Mater Sci: Mater Electron 34, 898 (2023). https://doi.org/10.1007/s10854-023-10279-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10279-z

Navigation